Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3197507.3197513acmconferencesArticle/Chapter ViewAbstractPublication Pagesasia-ccsConference Proceedingsconference-collections
research-article

A New LRPC-Kronecker Product Codes Based Public-Key Cryptography

Published: 23 May 2018 Publication History

Abstract

In this paper, we propose a variant of the McEliece cryptosystem, called LRPC-Kronecker cryptosystem. LRPC-Kronecker product codes are LRPC codes with higher rank and better error-correction capability. For this, we introduce a new decoding algorithm using blocks which has lower decoding complexity and higher error-correction capability compared to those of the LRPC decoding algorithm. Furthermore, it is shown that this scheme is secure against existing attacks.

References

[1]
N. Aragon, P. Gaborit, A. Hauteville, and J. P. Tillich. 2017. Improvement of Generic Attacks on the Rank Syndrome Decoding Problem. (2017). https://hal. archives-ouvertes.fr/hal-01618464 working paper or preprint. A New LRPC-Kronecker Product Codes Based Public-Key Cryptography APKC'18, June 4, 2018, Incheon, Republic of Korea
[2]
M. Baldi and F. Chiaraluce. 2007. Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC Codes. In 2007 IEEE International Symposium on Information Theory. 2591--2595.
[3]
M. Baldi, F. Chiaraluce, R. Garello, and F. Mininni. 2007. Quasi-Cyclic Low-Density Parity-Check Codes in the McEliece Cryptosystem. In 2007 IEEE International Conference on Communications. 951--956.
[4]
A. Becker, A. Joux, A. May, and A. Meurer. 2012. Decoding random binary linear codes in 2n/20: How 1 + 1 = 0 improves information set decoding. In Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer, Berlin, Heidelberg, 520--536.
[5]
T. Berger and P. Loidreau. 2005. Designing an Efficient and Secure Public-Key Cryptosystem Based on Reducible Rank Codes. In Progress in Cryptology - INDOCRYPT 2004, A. Canteaut and K. Viswanathan (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 218--229.
[6]
T. P. Berger and P. Loidreau. 2005. How to Mask the Structure of Codes for a Cryptographic Use. Designs, Codes and Cryptography 35, 1 (01 Apr 2005), 63--79.
[7]
E. Berlekamp, R. McEliece, and H. van Tilborg. 1978. On the inherent intractability of certain coding problems (Corresp.). IEEE Transactions on Information Theory 24, 3 (May 1978), 384--386.
[8]
D. Bernstein, T. Lange, and C. Peters. 2008. Attacking and Defending the McEliece Cryptosystem. In Proceedings of the 2Nd International Workshop on Post-Quantum Cryptography (PQCrypto '08). Springer-Verlag, Berlin, Heidelberg, 31--46.
[9]
J. Buss, G. Frandsen, and J. Shallit. 1999. The Computational Complexity of Some Problems of Linear Algebra. J. Comput. System Sci. 58, 3 (1999), 572 -- 596.
[10]
A. Canteaut and F. Chabaud. 1998. A new algorithm for finding minimum-weight words in a linear code: application to McEliece's cryptosystem and to narrowsense BCH codes of length 511. IEEE Transactions on Information Theory 44, 1 (Jan 1998), 367--378.
[11]
F. Chabaud and J. Stern. 1996. The cryptographic security of the syndrome decoding problem for rank distance codes. In Advances in Cryptology -- ASIACRYPT '96, K. Kim and T. Matsumoto (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 368--381.
[12]
I. V. Chizhov and M. A. Borodin. 2013. The failure of McEliece PKC based on Reed-Muller codes. Prikl. Diskr. Mat. Suppl. 6 (2013), 48--49.
[13]
A. Couvreur, I. Márquez-Corbella, and R. Pellikaan. 2014. A polynomial time attack against algebraic geometry code based public key cryptosystems. In 2014 IEEE International Symposium on Information Theory. 1446--1450.
[14]
P. H. Delsarte. 1978. Bilinear Forms over a finite field, with applications to coding theory. Journal of Combinatorial Theory, Series A 25, 3 (1978), 226--241.
[15]
J. C. Faugère, M. S. El Din, and P. J. Spaenlehauer. 2010. Computing Loci of Rank Defects of Linear Matrices Using Gröbner Bases and Applications to Cryptology. In Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation (ISSAC '10). ACM, New York, NY, USA, 257--264.
[16]
J. C. Faugère, F. Levy-dit Vehel, and L. Perret. 2008. Cryptanalysis of MinRank. In Advances in Cryptology -- CRYPTO 2008, David Wagner (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 280--296.
[17]
J. C. Faugère, A. Otmani, L. Perret, F. de Portzamparc, and J. P. Tillich. 2014. Structural weakness of compact variants of the McEliece cryptosystem. In 2014 IEEE International Symposium on Information Theory. 1717--1721.
[18]
J. C. Faugère, A. Otmani, L. Perret, F. de Portzamparc, and J. P. Tillich. 2016. Structural cryptanalysis of McEliece schemes with compact keys. Designs, Codes and Cryptography 79, 1 (01 Apr 2016), 87--112.
[19]
C. Faure and L. Minder. 2008. Cryptanalysis of the McEliece cryptosystem over hyperelliptic codes. In Proceedings of the eleventh International Workshop on Algebraic and Combinatorial Coding Theory. 99--107.
[20]
E. Fujisaki and T. Okamoto. 2013. Secure Integration of Asymmetric and Symmetric Encryption Schemes. Journal of Cryptology 26, 1 (2013), 80--101.
[21]
E. M. Gabidulin. 1985. Theory of codes with maximum rank distance. Problemy Peredachi Informatsii 21 (1985), 1--12.
[22]
E. M. Gabidulin, A. V. Ourivski, B. Honary, and B. Ammar. 2003. Reducible rank codes and their applications to cryptography. IEEE Transactions on Information Theory 49, 12 (2003), 3289--3293.
[23]
E. M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov. 1991. Ideals over a Noncommutative Ring and Their Application in Cryptology. In Proceedings of the 10th Annual International Conference on Theory and Application of Cryptographic Techniques (EUROCRYPT'91). Springer-Verlag, Berlin, Heidelberg, 482--489.
[24]
P. Gaborit, G. Murat, O. Ruatta, and G. Zémor. 2013. Low Rank Parity Check codes and their application to cryptography. In The Proceedings of Workshop on Coding and Cryptography (WCC) 2013. 168--180.
[25]
P. Gaborit, O. Ruatta, and J. Schrek. 2016. On the Complexity of the Rank Syndrome Decoding Problem. IEEE Transactions on Information Theory 62, 2 (Feb 2016), 1006--1019.
[26]
P. Gaborit, O. Ruatta, J. Schrek, and G. Zémor. 2014. New Results for Rank-Based Cryptography. In Progress in Cryptology -- AFRICACRYPT 2014, D. Pointcheval and D. Vergnaud (Eds.). Springer International Publishing, Cham, 1--12.
[27]
P. Gaborit and G. Zémor. 2016. On the Hardness of the Decoding and the Minimum Distance Problems for Rank Codes. IEEE Transactions on Information Theory 62, 12 (Dec 2016), 7245--7252.
[28]
A. Hauteville and J. P. Tillich. 2015. New algorithms for decoding in the rank metric and an attack on the LRPC cryptosystem. In 2015 IEEE International Symposium on Information Theory (ISIT). 2747--2751.
[29]
J. Hoffstein, J. Pipher, and J. H. Silverman. 1998. NTRU: A ring-based public key cryptosystem. In Algorithmic Number Theory, J. P. Buhler (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 267--288.
[30]
H. Janwa and O. Moreno. 1996. McEliece public key cryptosystems using algebraic-geometric codes. Designs, Codes and Cryptography 8, 3 (Jun 1996), 293--307.
[31]
K. Kobara and H. Imai. 2001. Semantically Secure McEliece Public-Key Cryptosystems -Conversions for McEliece PKC -. In Public Key Cryptography, K. Kim (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 19--35.
[32]
G. Landais and J. P. Tillich. 2013. An Efficient Attack of a McEliece Cryptosystem Variant Based on Convolutional Codes. In Post-Quantum Cryptography, P. Gaborit (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 102--117.
[33]
F. Levy-dit Vehel and L. Perret. 2006. Algebraic decoding of rank metric codes. Proceedings of YACC (2006).
[34]
P. Loidreau. 2017. A New Rank Metric Codes Based Encryption Scheme. In PostQuantum Cryptography, T. Lange and T. Takagi (Eds.). Springer International Publishing, Cham, 3--17.
[35]
C. Löndahl and T. Johansson. 2012. A New Version of McEliece PKC Based on Convolutional Codes. In Information and Communications Security, T.W. Chim and T. H. Yuen (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 461--470.
[36]
R. J. McEliece. 1978. A Public-Key Cryptosystem Based on Algebraic Coding Theory. DSN Progress Report 42, 44 (1978), 114--116.
[37]
L. Minder and A. Shokrollahi. 2007. Cryptanalysis of the Sidelnikov Cryptosystem. In Advances in Cryptology - EUROCRYPT 2007, M. Naor (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 347--360.
[38]
R. Misoczki and P. S. L. M. Barreto. 2009. Compact McEliece Keys from Goppa Codes. In Selected Areas in Cryptography, M.J. Jacobson, V. Rijmen, and R. SafaviNaini (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 376--392.
[39]
R. Misoczki, J. P. Tillich, N. Sendrier, and P. S. L. M. Barreto. 2013. MDPCMcEliece: New McEliece variants from Moderate Density Parity-Check codes. In 2013 IEEE International Symposium on Information Theory. 2069--2073.
[40]
C. Monico, J. Rosenthal, and A. Shokrollahi. 2000. Using low density parity check codes in the McEliece cryptosystem. In 2000 IEEE International Symposium on Information Theory. 215--.
[41]
H. Niederreiter. 1986. Knapsack Type Cryptosystems and Algebraic Coding Theory. Problems of Control and Information Theory 15 (1986), 159--166.
[42]
A. V. Ourivski and T. Johansson. 2002. New Technique for Decoding Codes in the Rank Metric and Its Cryptography Applications. Problems of Information Transmission 38, 3 (Jul 2002), 237--246.
[43]
R. Overbeck. 2005. A New Structural Attack for GPT and Variants. In Progress in Cryptology -- Mycrypt 2005, E. Dawson and S. Vaudenay (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 50--63.
[44]
N. Sendrier. 1998. On the Concatenated Structure of a Linear Code. Applicable Algebra in Engineering, Communication and Computing 9, 3 (Nov 1998), 221--242.
[45]
P. W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 26, 5 (Oct 1997), 1484--1509.
[46]
V. M. Sidelnikov. 1994. Public-key cryptosystem based on binary Reed-Muller codes. Discrete Mathematics and Applications 4, 3 (1994), 191--208.
[47]
V. M. Sidelnikov and S. O. Shestakov. 1992. On insecurity of cryptosystems based on generalized Reed-Solomon codes. Discrete Mathematics and Applications 2, 4 (1992), 439--444.
[48]
C. Wieschebrink. 2010. Cryptanalysis of the Niederreiter Public Key Scheme Based on GRS Subcodes. In Proceedings of the Third International Conference on Post-Quantum Cryptography (PQCrypto'10). Springer-Verlag, Berlin, Heidelberg, 61--72.

Cited By

View all
  • (2024)A new McEliece-type cryptosystem using Gabidulin-Kronecker product codesTheoretical Computer Science10.1016/j.tcs.2024.114480994:COnline publication date: 1-May-2024
  • (2019)Cryptanalysis on CCA2-Secured LRPC-Kronecker CryptosystemInformation Security and Privacy10.1007/978-3-030-21548-4_12(211-228)Online publication date: 30-May-2019
  • (2019)A New Gabidulin-Like Code and Its Application in CryptographyCodes, Cryptology and Information Security10.1007/978-3-030-16458-4_16(269-287)Online publication date: 28-Mar-2019

Index Terms

  1. A New LRPC-Kronecker Product Codes Based Public-Key Cryptography

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    APKC '18: Proceedings of the 5th ACM on ASIA Public-Key Cryptography Workshop
    May 2018
    66 pages
    ISBN:9781450357562
    DOI:10.1145/3197507
    • Program Chairs:
    • Keita Emura,
    • Jae Hong Seo,
    • Yohei Watanabe
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 23 May 2018

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. block decoding
    2. kronecker product
    3. lrpc codes
    4. mceliece cryptosystem
    5. rank metric codes

    Qualifiers

    • Research-article

    Funding Sources

    • Samsung Science and Technology Foundation

    Conference

    ASIA CCS '18
    Sponsor:

    Acceptance Rates

    APKC '18 Paper Acceptance Rate 7 of 20 submissions, 35%;
    Overall Acceptance Rate 36 of 103 submissions, 35%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)5
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 16 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)A new McEliece-type cryptosystem using Gabidulin-Kronecker product codesTheoretical Computer Science10.1016/j.tcs.2024.114480994:COnline publication date: 1-May-2024
    • (2019)Cryptanalysis on CCA2-Secured LRPC-Kronecker CryptosystemInformation Security and Privacy10.1007/978-3-030-21548-4_12(211-228)Online publication date: 30-May-2019
    • (2019)A New Gabidulin-Like Code and Its Application in CryptographyCodes, Cryptology and Information Security10.1007/978-3-030-16458-4_16(269-287)Online publication date: 28-Mar-2019

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media