Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3183713.3183738acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Efficient Selection of Geospatial Data on Maps for Interactive and Visualized Exploration

Published: 27 May 2018 Publication History

Abstract

With the proliferation of mobile devices, large collections of geospatial data are becoming available, such as geo-tagged photos. Map rendering systems play an important role in presenting such large geospatial datasets to end users. We propose that such systems should support the following desirable features: representativeness, visibility constraint, zooming consistency, and panning consistency. The first two constraints are fundamental challenges to a map exploration system, which aims to efficiently select a small set of representative objects from the current region of user's interest, and any two selected objects should not be too close to each other for users to distinguish in the limited space of a screen. We formalize it as the Spatial Object Selection (SOS) problem, prove that it is an NP-hard problem, and develop a novel approximation algorithm with performance guarantees. % To further support interactive exploration of geospatial data on maps, we propose the Interactive SOS (ISOS) problem, in which we enrich the SOS problem with the zooming consistency and panning consistency constraints. The objective of ISOS is to provide seamless experience for end-users to interactively explore the data by navigating the map. We extend our algorithm for the SOS problem to solve the ISOS problem, and propose a new strategy based on pre-fetching to significantly enhance the efficiency. Finally we have conducted extensive experiments to show the efficiency and scalability of our approach.

References

[1]
S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. The aqua approximate query answering system. In ACM Sigmod Record, volume 28, pages 574--576. ACM, 1999.
[2]
S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. Blinkdb: queries with bounded errors and bounded response times on very large data. In Proceedings of the 8th ACM European Conference on Computer Systems, pages 29--42. ACM, 2013.
[3]
A. Angel and N. Koudas. Efficient diversity-aware search. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of data, pages 781--792. ACM, 2011.
[4]
L. G. Azevedo, G. Zimbr ao, and J. M. De Souza. Approximate query processing in spatial databases using raster signatures. In Advances in Geoinformatics, pages 69--86. Springer, 2007.
[5]
L. Battle, R. Chang, and M. Stonebraker. Dynamic prefetching of data tiles for interactive visualization. In Proceedings of the 2016 International Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 1363--1375, 2016.
[6]
L. Battle, M. Stonebraker, and R. Chang. Dynamic reduction of query result sets for interactive visualizaton. In Big Data, 2013 IEEE International Conference on, pages 1--8. IEEE, 2013.
[7]
A. Belussi, B. Catania, and S. Migliorini. Approximate queries for spatial data., 2013.
[8]
J. Christensen, J. Marks, and S. Shieber. An empirical study of algorithms for point-feature label placement. ACM Trans. Graph., 14(3):203--232, July 1995.
[9]
W. G. Cochran. Relative accuracy of systematic and stratified random samples for a certain class of populations. The Annals of Mathematical Statistics, pages 164--177, 1946.
[10]
W. G. Cochran. Sampling techniques. John Wiley & Sons, 2007.
[11]
T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears. Mapreduce online. In Nsdi, volume 10, page 20, 2010.
[12]
F. Csillag, M. Kertész, and Á. Kummert. Sampling and mapping of heterogeneous surfaces: multi-resolution tiling adjusted to spatial variability. International Journal of Geographical Information Systems, 10(7):851--875, 1996.
[13]
A. Das, J. Gehrke, and M. Riedewald. Approximation techniques for spatial data. In Proceedings of the 2004 ACM SIGMOD international conference on Management of data, pages 695--706. ACM, 2004.
[14]
A. Das Sarma, H. Lee, H. Gonzalez, J. Madhavan, and A. Halevy. Efficient spatial sampling of large geographical tables. In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pages 193--204. ACM, 2012.
[15]
E. M. Delmelle. Spatial sampling. In Handbook of Regional Science, pages 1385--1399. Springer, 2014.
[16]
M. Drosou and E. Pitoura. Disc diversity: result diversification based on dissimilarity and coverage. Proceedings of the VLDB Endowment, 6(1):13--24, 2012.
[17]
M. Drosou and E. Pitoura. Diverse set selection over dynamic data. IEEE Transactions on Knowledge and Data Engineering, 26(5):1102--1116, 2014.
[18]
W. Feller. An introduction to probability theory and its applications, volume 2. John Wiley & Sons, 2008.
[19]
A. U. Frank and S. Timpf. Multiple representations for cartographic objects in a multi-scale tree-an intelligent graphical zoom. Computers & Graphics, 18(6):823--829, 1994.
[20]
P. Fraternali, D. Martinenghi, and M. Tagliasacchi. Top-k bounded diversification. In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pages 421--432. ACM, 2012.
[21]
A. Galakatos, A. Crotty, E. Zgraggen, C. Binnig, and T. Kraska. Revisiting reuse for approximate query processing. Proceedings of the VLDB Endowment, 10(10):1142--1153, 2017.
[22]
M. F. Goodchild and R. P. Haining. Gis and spatial data analysis: Converging perspectives. Papers in Regional Science, 83(1):363--385, 2004.
[23]
J. L. Green and J. B. Plotkin. A statistical theory for sampling species abundances. Ecology letters, 10(11):1037--1045, 2007.
[24]
J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Raman, T. Roth, and P. J. Haas. Interactive data analysis: The control project. Computer, 32(8):51--59, 1999.
[25]
J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In ACM SIGMOD Record, volume 26, pages 171--182. ACM, 1997.
[26]
W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American statistical association, 58(301):13--30, 1963.
[27]
D. G. Horvitz and D. J. Thompson. A generalization of sampling without replacement from a finite universe. Journal of the American statistical Association, 47(260):663--685, 1952.
[28]
S. Idreos, O. Papaemmanouil, and S. Chaudhuri. Overview of data exploration techniques. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pages 277--281. ACM, 2015.
[29]
C. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable approximate query processing with the dbo engine. ACM Transactions on Database Systems (TODS), 33(4):23, 2008.
[30]
N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi. Distributed and interactive cube exploration. In Data Engineering (ICDE), 2014 IEEE 30th International Conference on, pages 472--483. IEEE, 2014.
[31]
P. K. Kefaloukos, M. Vaz Salles, and M. Zachariasen. Declarative cartography: In-database map generalization of geospatial datasets. In Data Engineering (ICDE), 2014 IEEE 30th International Conference on, pages 1024--1035. IEEE, 2014.
[32]
A. Kim, E. Blais, A. Parameswaran, P. Indyk, S. Madden, and R. Rubinfeld. Rapid sampling for visualizations with ordering guarantees. Proceedings of the VLDB Endowment, 8(5):521--532, 2015.
[33]
M. Mahdian, O. Schrijvers, and S. Vassilvitskii. Algorithmic cartography: Placing points of interest and ads on maps. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 755--764. ACM, 2015.
[34]
B. Matérn. Spatial variation, volume 36. Springer Science & Business Media, 2013.
[35]
A. Milne. The centric systematic area-sample treated as a random sample. Biometrics, 15(2):270--297, 1959.
[36]
J. Neyman. On the two different aspects of the representative method: the method of stratified sampling and the method of purposive selection. Journal of the Royal Statistical Society, 97(4):558--625, 1934.
[37]
J. Neyman. Contribution to the theory of sampling human populations. Journal of the American Statistical Association, 33(201):101--116, 1938.
[38]
S. Nutanong, M. D. Adelfio, and H. Samet. Multiresolution select-distinct queries on large geographic point sets. In Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pages 159--168. ACM, 2012.
[39]
S. Peng, H. Samet, and M. D. Adelfio. Viewing streaming spatially-referenced data at interactive rates. In Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 409--412. ACM, 2014.
[40]
E. Puppo and G. Dettori. Towards a formal model for multiresolution spatial maps. In International Symposium on Spatial Databases, pages 152--169. Springer, 1995.
[41]
L. Qin, J. X. Yu, and L. Chang. Diversifying top-k results. Proceedings of the VLDB Endowment, 5(11):1124--1135, 2012.
[42]
R. Royall. An old approach to finite population sampling theory. Journal of the American Statistical Association, 63(324):1269--1279, 1968.
[43]
E. Scudiero, R. Deiana, P. Teatini, G. Cassiani, and F. Morari. Constrained optimization of spatial sampling in salt contaminated coastal farmland using emi and continuous simulated annealing. Procedia Environmental Sciences, 7:234--239, 2011.
[44]
R. J. Serfling. Probability inequalities for the sum in sampling without replacement. The Annals of Statistics, pages 39--48, 1974.
[45]
K. S. Shea and R. B. McMaster. Cartographic generalization in a digital environment: When and how to generalize. In Proceedings of AutoCarto, volume 9, pages 56--67, 1989.
[46]
J. W. Van Groenigen. The influence of variogram parameters on optimal sampling schemes for mapping by kriging. Geoderma, 97(3):223--236, 2000.
[47]
J.-F. Wang, A. Stein, B.-B. Gao, and Y. Ge. A review of spatial sampling. Spatial Statistics, 2:1--14, 2012.
[48]
L. Wang, R. Christensen, F. Li, and K. Yi. Spatial online sampling and aggregation. Proceedings of the VLDB Endowment, 9(3):84--95, 2015.
[49]
P. Wang, W. He, and X. Liu. An efficient sampling method for characterizing points of interests on maps. In Data Engineering (ICDE), 2014 IEEE 30th International Conference on, pages 1012--1023. IEEE, 2014.
[50]
J. M. Ware, C. B. Jones, and N. Thomas. Automated map generalization with multiple operators: a simulated annealing approach. International Journal of Geographical Information Science, 17(8):743--769, 2003.
[51]
K. Zeng, S. Agarwal, A. Dave, M. Armbrust, and I. Stoica. G-ola: Generalized on-line aggregation for interactive analysis on big data. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pages 913--918. ACM, 2015.

Cited By

View all
  • (2024)SalienTime: User-driven Selection of Salient Time Steps for Large-Scale Geospatial Data VisualizationProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3642944(1-19)Online publication date: 11-May-2024
  • (2024)CheetahTraj: Efficient Visualization for Large Trajectory Dataset With Quality GuaranteeIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.338748036:11(5737-5752)Online publication date: Nov-2024
  • (2023)BlinkViz: Fast and Scalable Approximate Visualization on Very Large Datasets using Neural-Enhanced Mixed Sum-Product NetworksProceedings of the ACM Web Conference 202310.1145/3543507.3583411(1734-1742)Online publication date: 30-Apr-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGMOD '18: Proceedings of the 2018 International Conference on Management of Data
May 2018
1874 pages
ISBN:9781450347037
DOI:10.1145/3183713
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 May 2018

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. geospatial data visualization
  2. map exploration
  3. sampling

Qualifiers

  • Research-article

Funding Sources

  • DP170102726
  • NSFC 91646204
  • NSFC 61728204
  • DP180102050

Conference

SIGMOD/PODS '18
Sponsor:

Acceptance Rates

SIGMOD '18 Paper Acceptance Rate 90 of 461 submissions, 20%;
Overall Acceptance Rate 785 of 4,003 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)47
  • Downloads (Last 6 weeks)9
Reflects downloads up to 16 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)SalienTime: User-driven Selection of Salient Time Steps for Large-Scale Geospatial Data VisualizationProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3642944(1-19)Online publication date: 11-May-2024
  • (2024)CheetahTraj: Efficient Visualization for Large Trajectory Dataset With Quality GuaranteeIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.338748036:11(5737-5752)Online publication date: Nov-2024
  • (2023)BlinkViz: Fast and Scalable Approximate Visualization on Very Large Datasets using Neural-Enhanced Mixed Sum-Product NetworksProceedings of the ACM Web Conference 202310.1145/3543507.3583411(1734-1742)Online publication date: 30-Apr-2023
  • (2023)WhaleVis: Visualizing the History of Commercial Whaling2023 IEEE Visualization and Visual Analytics (VIS)10.1109/VIS54172.2023.00028(96-100)Online publication date: 21-Oct-2023
  • (2023)Learn to Explore: on Bootstrapping Interactive Data Exploration with Meta-learning2023 IEEE 39th International Conference on Data Engineering (ICDE)10.1109/ICDE55515.2023.00135(1720-1733)Online publication date: Apr-2023
  • (2023)An efficient visual exploration approach of geospatial vector big data on the web mapInformation Systems10.1016/j.is.2023.102333(102333)Online publication date: Dec-2023
  • (2022)SAFEProceedings of the VLDB Endowment10.14778/3494124.349413515:3(513-526)Online publication date: 4-Feb-2022
  • (2022)Points-of-interest relationship inference with spatial-enriched graph neural networksProceedings of the VLDB Endowment10.14778/3494124.349413415:3(504-512)Online publication date: 4-Feb-2022
  • (2022)DDLVis: Real-time Visual Query of Spatiotemporal Data Distribution via Density Dictionary LearningIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.311476228:1(1062-1072)Online publication date: 1-Jan-2022
  • (2022)Top-k Socio-Spatial Co-engaged Location Selection for Social UsersIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2022.3151095(1-1)Online publication date: 2022
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media