Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Enabledness and termination in refinement algebra

Published: 01 June 2009 Publication History

Abstract

Refinement algebras are abstract algebras for reasoning about programs in a total correctness framework. We extend a reduct of von Wright's demonic refinement algebra with two operators for modelling enabledness and termination of programs. We show how the operators can be used for expressing relations between programs and apply the algebra to reasoning about action systems.

References

[1]
Aboul-Hosn, K. and Kozen, D.C., KAT-ML: An interactive theorem prover for Kleene algebra with tests. J. Appl. Non-Classical Logics. v16 i1ï¿2. 9-34.
[2]
Back, R.J.R., . In: Mathematical Centre Tracts, vol. 131. Mathematical Centre, Amsterdam.
[3]
Back, R.J.R. and Kurki-Suonio, R., Decentralisation of process nets with centralised control. In: Proc. of 2nd Ann. ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing, ACM Press, New York. pp. 131-142.
[4]
Back, R.J.R., A method for refining atomicity in parallel algorithms. In: Odijk, E., Rem, M., Syre, J.-C. (Eds.), Vol. II: Parallel Languages, Lect. Notes in Comput. Sci., vol. 366. Springer, Berlin. pp. 199-216.
[5]
Back, R.~J.~R. and Sere, K., Stepwise refinement of action systems. Struct. Program. v12 i1. 17-30.
[6]
Back, R.J.R. and von Wright, J., Refinement calculus: A systematic introduction. In: Graduate Texts in Computer Science, Springer, New York.
[7]
Back, R.J.R. and von Wright, J., Reasoning algebraically about loops. Acta Inform. v36 i4. 295-334.
[8]
Chen, W. and Udding, J.T., Program inversion: more than fun!. Sci. Comput. Programming. v15 i1. 1-13.
[9]
Cohen, E., Separation and reduction. In: Backhouse, R., Oliveira, J.N. (Eds.), Lect. Notes in Comput. Sci., vol. 1837. Springer, Berlin. pp. 45-59.
[10]
Desharnais, J., Möller, B. and Struth, G., Kleene algebra with domain. ACM Trans. Comput. Logic. v7 i4. 798-833.
[11]
J. Desharnais, B. Möller, G. Struth, Algebraic notions of termination, Technischer Bericht 2006-23, Institut für Informatik, Universität Augsburg, 2006
[12]
Dijkstra, E.W., A Discipline of Programming. 1976. Prentice Hall, Englewood Cliffs.
[13]
Floyd, R.W., Assigning meanings to programs. In: Schwartz, J.T. (Ed.), Proc. of Symp. on Applied Math, vol. 19. Amer. Math. Soc., Providence, RI. pp. 19-32.
[14]
Gries, D., The science of programming. In: Texts and Monographs in Computer Science, Springer, New York.
[15]
Höfner, P. and Struth, G., Automated reasoning in Kleene algebra. In: Pfenning, F. (Ed.), Lect. Notes in Artif. Intell., vol. 4603. Springer, Berlin. pp. 279-294.
[16]
Höfner, P. and Struth, G., Can refinement be automated?. In: Boiten, E.A., Derrick, J., Smith, G. (Eds.), Electron. Notes in Theor. Comput. Sci., vol. 201. pp. 197-222.
[17]
Höfner, P., Möller, B. and Solin, K., Omega algebra, demonic refinement algebra and commands. In: Schmidt, R. (Ed.), Lect. Notes in Comput. Sci., vol. 3125. Springer, Berlin. pp. 222-234.
[18]
Kozen, D., A completeness theorem for Kleene algebras and the algebra of regular events. Inform. and Comput. v110 i2. 366-390.
[19]
Kozen, D., Kleene algebra with tests. ACM Trans. Program. Lang. Syst. v19 i3. 427-443.
[20]
Meinicke, L.A. and Solin, K., Refinement algebra for probabilistic programs. In: Boiten, E.A., Derrick, J., Smith, G. (Eds.), Electron. Notes in Theor. Comput. Sci., vol. 201. pp. 177-195.
[21]
Möller, B., Kleene getting lazy. Sci. Comput. Programming. v65 i2. 195-214.
[22]
Morgan, C.C., . In: Prentice Hall Int. Series in Comput. Sci., Prentice Hall, New York.
[23]
Nelson, G., A generalization of Dijkstraï's calculus. ACM Trans. Program. Lang. Syst. v11 i4. 517-561.
[24]
Solin, K., On two dually nondeterministic refinement algebras. In: Schmidt, R. (Ed.), Lect. Notes in Comput. Sci., vol. 4136. Springer, Berlin. pp. 373-387.
[25]
Solin, K., A sketch of a dynamic epistemic semiring. In: Leivant, D., de Queiroz, R.J.G.B. (Eds.), Lect. Notes in Comput. Sci., vol. 4576. Springer, Berlin. pp. 337-350.
[26]
Solin, K. and von Wright, J., Refinement algebra with operators for enabledness and termination. In: Uustalu, T. (Ed.), Lect. Notes in Comput. Sci., vol. 4014. Springer, Berlin. pp. 397-415.
[27]
von Wright, J., From Kleene algebra to refinement algebra. In: Boiten, E.A., Möller, B. (Eds.), Lect. Notes in Comput. Sci., vol. 2386. Springer, Berlin. pp. 233-262.
[28]
von Wright, J., Towards a refinement algebra. Sci. Comput. Programming. v51 i1ï¿2. 23-45.

Cited By

View all
  1. Enabledness and termination in refinement algebra

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Science of Computer Programming
    Science of Computer Programming  Volume 74, Issue 8
    June, 2009
    173 pages

    Publisher

    Elsevier North-Holland, Inc.

    United States

    Publication History

    Published: 01 June 2009

    Author Tags

    1. Action systems
    2. Enabledness
    3. Refinement algebra
    4. Termination

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 17 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media