Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Equiangular lines and the Lemmens–Seidel conjecture

Published: 01 February 2020 Publication History

Abstract

In this paper, claims by Lemmens and Seidel in 1973 about equiangular sets of lines with angle 1 ∕ 5 are proved by carefully analyzing pillar decomposition, with the aid of the uniqueness of two-graphs on 276 vertices. The Neumann Theorem is generalized in the sense that if there are more than 2 r − 2 equiangular lines in R r, then the angle is quite restricted. Together with techniques on finding saturated equiangular sets, we determine the maximum size of equiangular sets “exactly” in an r-dimensional Euclidean space for r = 8, 9, and 10.

References

[1]
Azarija Jernej, Marc Tilen, There is no ( 95, 40, 12, 20 ) strongly regular graph, 2016, arXiv preprint arXiv:1603.02032.
[2]
Balla Igor, Dräxler Felix, Keevash Peter, Sudakov Benny, Equiangular lines and spherical codes in Euclidean space, Invent. Math. 211 (1) (2018) 179–212.
[3]
Bannai Eiichi, Bannai Etsuko, Xiang Ziqing, Yu Wei-Hsuan, Zhu Yan, Classification problem of certain spherical embeddings of strongly regular graphs, 2018, private communication.
[4]
Bannai Eiichi, Okuda Takayuki, Tagami Makoto, Spherical designs of harmonic index t, J. Approx. Theory 195 (2015) 1–18.
[5]
Bannai Eiichi, Zhao Da, Zhu Lin, Zhu Yan, Zhu Yinfeng, Half of an antipodal spherical design, Arch. Math (2018) 1–8.
[6]
Barg Alexander, Glazyrin Alexey, Okoudjou Kasso A., Yu Wei-Hsuan, Finite two-distance tight frames, Linear Algebra Appl. 475 (2015) 163–175.
[7]
Barg Alexander, Yu Wei-Hsuan, New bounds for equiangular lines, Contemp. Math. 625 (2014) 111–121.
[8]
Boyd Stephen, Vandenberghe Lieven, Convex Optimization, Cambridge University Press, 2004.
[9]
Peter J. Cameron, Strongly regular graphs, in: Topics in Algebraic Graph Theory, vol. 102, Cambridge Univ. Press, 2004, pp. 203–221.
[10]
Cohn Henry, Kumar Abhinav, Universally optimal distribution of points on spheres, J. Amer. Math. Soc. 20 (1) (2007) 99–148.
[11]
Delsarte P., Spherical codes and designs, Geom. Dedicata 6 (1977) 363–388.
[12]
Delsarte Ph., Goethals J.M., Seidel J. Jacob, Orthogonal matrices with zero diagonal. II, Canad. J. Math. 23 (5) (1971) 816–832.
[13]
Fickus Matthew, Jasper John, Mixon Dustin G., Peterson Jesse, Tremain equiangular tight frames, J. Combin. Theory Ser. A 153 (2018) 54–66.
[14]
Fickus Matthew, Mixon Dustin G., Jasper John, Equiangular tight frames from hyperovals, IEEE Trans. Inform. Theory 62 (9) (2016) 5225–5236.
[15]
Flajolet Philippe, Sedgewick Robert, Analytic Combinatorics, Cambridge University Press, Cambridge, 2009.
[16]
Glazyrin Alexey, Yu Wei-Hsuan, Upper bounds for s-distance sets and equiangular lines, Adv. Math. 330 (2018) 810–833.
[17]
Godsil Chris, Royle Gordon, Algebraic Graph Theory, in: Graduate Texts in Mathematics, vol. 207, Springer-Verlag, New York, 2013.
[18]
Goethals J.M., Seidel J.J., The regular two-graph on 276 vertices, Discrete Math. 12 (2) (1975) 143–158.
[19]
Greaves Gary R.W., Equiangular line systems and switching classes containing regular graphs, Linear Algebra Appl. 536 (2018) 31–51.
[20]
Greaves Gary, Koolen Jacobus H., Munemasa Akihiro, Szöllősi Ferenc, Equiangular lines in Euclidean spaces, J. Combin. Theory Ser. A 138 (2016) 208–235.
[21]
Greaves Gary, Suda Sho, Symmetric and skew-symmetric { 0, ± 1 }-matrices with large determinants, J. Combin. Des. 25 (11) (2017) 507–522.
[22]
Greaves Gary, Yatsyna Pavlo, On equiangular lines in 17 dimensions and the characteristic polynomial of a Seidel matrix, Math. Comp. 88 (320) (2019) 3041–3061.
[23]
Haantjes J., Equilateral point-sets in elliptic two- and three-dimensional spaces, Nieuw Arch. Wisk 22 (2) (1948) 355–362.
[24]
James E. Humphreys, Reflection Groups and Coxeter Groups, vol. 29, Cambridge University Press, 1992.
[25]
Jasper John, Mixon Dustin G., Fickus Matthew, Kirkman equiangular tight frames and codes, IEEE Trans. Inform. Theory 60 (1) (2014) 170–181.
[26]
Jiang Zilin, Polyanskii Alexandr, Forbidden subgraphs for graphs of bounded spectral radius, with applications to equiangular lines, 2017, arXiv preprint arXiv:1708.02317.
[27]
Jiang Zilin, Tidor Jonathan, Yao Yuan, Zhang Shengtong, Zhao Yufei, Equiangular lines with a fixed angle, 2019, arXiv preprint arXiv:1907.12466.
[28]
King Emily J., Tang Xiaoxian, Computing upper bounds for equiangular lines in Euclidean spaces, 2016, arXiv preprint arXiv:1606.03259.
[29]
Lemmens Petrus W.H., Seidel Johan J., Equiangular lines, J. Algebra 24 (3) (1973) 494–512.
[30]
Lin Yen-chi Roger, Yu Wei-Hsuan, Saturated configuration and new construction of equiangular lines, 2018, arXiv preprint arXiv:1801.04502.
[31]
van Lint Jacobus H., Seidel Johan J., Equilateral point sets in elliptic geometry, Indag. Math. 28 (3) (1966) 335–348.
[32]
Mixon Dustin G., Solazzo James, A short introduction to optimal line packings, College Math. J. 49 (2) (2018) 82–91.
[33]
Neumaier Arnold, Some sporadic geometries related to P G ( 3, 2 ), Arch. Math 42 (1) (1984) 89–96.
[34]
Neumaier Arnold, Graph representations, two-distance sets, and equiangular lines, Linear Algebra Appl. 114 (1989) 141–156.
[35]
Okuda Takayuki, Yu Wei-Hsuan, A new relative bound for equiangular lines and nonexistence of tight spherical designs of harmonic index 4, European J. Combin. 53 (2016) 96–103.
[36]
Renes Joseph M., Blume-Kohout Robin, Scott Andrew J., Caves Carlton M., Symmetric informationally complete quantum measurements, J. Math. Phys. 45 (6) (2004) 2171–2180.
[37]
Saff Edward B., Kuijlaars Amo B.J., Distributing many points on a sphere, Math. Intelligencer 19 (1) (1997) 5–11.
[38]
The Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.8), 2019, http://www.sagemath.org.
[39]
Scott Andrew J., Tight informationally complete quantum measurements, J. Phys. A: Math. Gen. 39 (43) (2006) 13507.
[40]
Scott Andrew James, Grassl Markus, Symmetric informationally complete positive-operator-valued measures: A new computer study, J. Math. Phys. 51 (4) (2010) 042203.
[41]
Smith John H., Some properties of the spectrum of a graph, in: Combinatorial Structures and their Applications, Gordon and Breach New York, 1970, pp. 403–406.
[42]
Strohmer Thomas, Heath Robert W., Grassmannian frames with applications to coding and communication, Appl. Comput. Harmon. Anal. 14 (3) (2003) 257–275.
[43]
Taylor Donald E., Some topics in the theory of finite groups, (Ph.D. thesis) University of Oxford, 1971.
[44]
Thomson XXIV Joseph John, On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure, Lond. Edinb. Dublin Phil. Mag. J. Sci. 7 (39) (1904) 237–265.
[45]
Waldron Shayne, On the construction of equiangular frames from graphs, Linear Algebra Appl. 431 (11) (2009) 2228–2242.
[46]
Welch Lloyd, Lower bounds on the maximum cross correlation of signals (corresp.), IEEE Trans. Inform. Theory 20 (3) (1974) 397–399.
[47]
Witt Ernst, Die 5-fach transitiven Gruppen von Mathieu, Abh. Math. Semin. Univ. Hambg. 12 (1) (1937) 256–264.
[48]
Yu Wei-Hsuan, There are no 76 equiangular lines in R 19 , 2015, arXiv preprint arXiv:1511.08569.
[49]
Zauner Gerhard, Grundzüge einer Nichtkommutativen Designtheorie, (Ph.D. thesis) University of Vienna, 1999.
[50]
Zhu Yan, Bannai Eiichi, Bannai Etsuko, Kim Kyoung-Tark, Yu Wei-Hsuan, On spherical designs of some harmonic indices, Electron. J. Combin. 24 (2) (2017) 2–14.

Cited By

View all
  • (2022)The Lemmens-Seidel conjecture and forbidden subgraphsJournal of Combinatorial Theory Series A10.1016/j.jcta.2021.105538185:COnline publication date: 1-Jan-2022
  • (2022)k-Point semidefinite programming bounds for equiangular linesMathematical Programming: Series A and B10.1007/s10107-021-01638-x194:1-2(533-567)Online publication date: 1-Jul-2022

Index Terms

  1. Equiangular lines and the Lemmens–Seidel conjecture
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Discrete Mathematics
      Discrete Mathematics  Volume 343, Issue 2
      Feb 2020
      361 pages

      Publisher

      Elsevier Science Publishers B. V.

      Netherlands

      Publication History

      Published: 01 February 2020

      Author Tags

      1. Equiangular set
      2. Pillar methods
      3. Lemmens–Seidel

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 29 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2022)The Lemmens-Seidel conjecture and forbidden subgraphsJournal of Combinatorial Theory Series A10.1016/j.jcta.2021.105538185:COnline publication date: 1-Jan-2022
      • (2022)k-Point semidefinite programming bounds for equiangular linesMathematical Programming: Series A and B10.1007/s10107-021-01638-x194:1-2(533-567)Online publication date: 1-Jul-2022

      View Options

      View options

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media