Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Establishment of extensive artificial intelligence models for kinase inhibitor prediction: : Identification of novel PDGFRB inhibitors

Published: 01 April 2023 Publication History

Abstract

Identifying hit compounds is an important step in drug development. Unfortunately, this process continues to be a challenging task. Several machine learning models have been generated to aid in simplifying and improving the prediction of candidate compounds. Models tuned for predicting kinase inhibitors have been established. However, an effective model can be limited by the size of the chosen training dataset. In this study, we tested several machine learning models to predict potential kinase inhibitors. A dataset was curated from a number of publicly available repositories. This resulted in a comprehensive dataset covering more than half of the human kinome. More than 2,000 kinase models were established using different model approaches. The performances of the models were compared, and the Keras-MLP model was determined to be the best performing model. The model was then used to screen a chemical library for potential inhibitors targeting platelet-derived growth factor receptor-β (PDGFRB). Several PDGFRB candidates were selected, and in vitro assays confirmed four compounds with PDGFRB inhibitory activity and IC50 values in the nanomolar range. These results show the effectiveness of machine learning models trained on the reported dataset. This report would aid in the establishment of machine learning models as well as in the discovery of novel kinase inhibitors.

Graphical abstract

Display Omitted

Highlights

A dataset containing more than 6,500,000 bioactive data was curated.
More than 2000 machine learning models targeting the human kinome were generated.
Favorable ACC (0.864 ± 0.084) and AUC (0.912 ± 0.073) model averages were obtained.
A screening campaign for PDGFR identified four inhibitors with nanomolar potency.

References

[1]
M.M. Attwood, D. Fabbro, A.V. Sokolov, S. Knapp, H.B. Schioth, Trends in kinase drug discovery: targets, indications and inhibitor design, Nat. Rev. Drug Discov. 20 (2021) 839–861.
[2]
R. Roskoski Jr., Properties of FDA-approved small molecule protein kinase inhibitors: a 2022 update, Pharmacol. Res. 175 (2022).
[3]
C.M. Lovly, A.T. Shaw, Molecular pathways: resistance to kinase inhibitors and implications for therapeutic strategies, Clin. Cancer Res. 20 (2014) 2249–2256.
[4]
M.E. Berginski, N. Moret, C. Liu, D. Goldfarb, P.K. Sorger, S.M. Gomez, The Dark Kinase Knowledgebase: an online compendium of knowledge and experimental results of understudied kinases, Nucleic Acids Res. 49 (2021) D529–D535.
[5]
X.Y. Meng, H.X. Zhang, M. Mezei, M. Cui, Molecular docking: a powerful approach for structure-based drug discovery, Curr. Comput. Aided Drug Des. 7 (2011) 146–157.
[6]
P. Polishchuk, Interpretation of quantitative structure-activity relationship models: past, present, and future, J. Chem. Inf. Model. 57 (2017) 2618–2639.
[7]
J. Vamathevan, D. Clark, P. Czodrowski, I. Dunham, E. Ferran, G. Lee, B. Li, A. Madabhushi, P. Shah, M. Spitzer, S. Zhao, Applications of machine learning in drug discovery and development, Nat. Rev. Drug Discov. 18 (2019) 463–477.
[8]
B. Merget, S. Turk, S. Eid, F. Rippmann, S. Fulle, Profiling prediction of kinase inhibitors: toward the virtual assay, J. Med. Chem. 60 (2017) 474–485.
[9]
X. Li, Z. Li, X. Wu, Z. Xiong, T. Yang, Z. Fu, X. Liu, X. Tan, F. Zhong, X. Wan, D. Wang, X. Ding, R. Yang, H. Hou, C. Li, H. Liu, K. Chen, H. Jiang, M. Zheng, Deep learning enhancing kinome-wide polypharmacology profiling: model construction and experiment validation, J. Med. Chem. 63 (2020) 8723–8737.
[10]
R. Rodríguez-Pérez, J. Bajorath, Multitask machine learning for classifying highly and weakly potent kinase inhibitors, ACS Omega 4 (2019) 4367–4375.
[11]
F. Buchwald, L. Richter, S. Kramer, Predicting a small molecule-kinase interaction map: a machine learning approach, J. Cheminf. 3 (2011) 22.
[12]
L. Bao, Z. Wang, Z. Wu, H. Luo, J. Yu, Y. Kang, D. Cao, T. Hou, Kinome-wide polypharmacology profiling of small molecules by multi-task graph isomorphism network approach, Acta Pharm. Sin. B 13 (2023) 54–67,.
[13]
P.V. Pogodin, A.A. Lagunin, A.V. Rudik, D.A. Filimonov, D.S. Druzhilovskiy, M.C. Nicklaus, V.V. Poroikov, How to achieve better results using PASS-based virtual screening: case study for kinase inhibitors, Front. Chem. 6 (2018) 133.
[14]
A. Cichonska, B. Ravikumar, R.J. Allaway, F. Wan, S. Park, O. Isayev, S. Li, M. Mason, A. Lamb, Z. Tanoli, M. Jeon, S. Kim, M. Popova, S. Capuzzi, J. Zeng, K. Dang, G. Koytiger, J. Kang, C.I. Wells, T.M. Willson, I.-D.D.-K.B.P.C.Consortium, T.I. Oprea, A. Schlessinger, D.H. Drewry, G. Stolovitzky, K. Wennerberg, J. Guinney, T. Aittokallio, Crowdsourced mapping of unexplored target space of kinase inhibitors, Nat. Commun. 12 (2021) 3307.
[15]
X. Yang, Y. Wang, R. Byrne, G. Schneider, S. Yang, Concepts of artificial intelligence for computer-assisted drug discovery, Chem. Rev. 119 (2019) 10520–10594.
[16]
X. Domingo-Almenara, C. Guijas, E. Billings, J.R. Montenegro-Burke, W. Uritboonthai, A.E. Aisporna, E. Chen, H.P. Benton, G. Siuzdak, The METLIN small molecule dataset for machine learning-based retention time prediction, Nat. Commun. 10 (2019) 5811.
[17]
P. Carracedo-Reboredo, J. Linares-Blanco, N. Rodriguez-Fernandez, F. Cedron, F.J. Novoa, A. Carballal, V. Maojo, A. Pazos, C. Fernandez-Lozano, A review on machine learning approaches and trends in drug discovery, Comput. Struct. Biotechnol. J. 19 (2021) 4538–4558.
[18]
D. Mendez, A. Gaulton, A.P. Bento, J. Chambers, M. De Veij, E. Felix, M.P. Magarinos, J.F. Mosquera, P. Mutowo, M. Nowotka, M. Gordillo-Maranon, F. Hunter, L. Junco, G. Mugumbate, M. Rodriguez-Lopez, F. Atkinson, N. Bosc, C. Radoux, A. Segura-Cabrera, A. Hersey, A.R. Leach, ChEMBL: towards direct deposition of bioassay data, Nucleic Acids Res. 47 (2019) D930–D940.
[19]
S. Kim, J. Chen, T.J. Cheng, A. Gindulyte, J. He, S.Q. He, Q.L. Li, B.A. Shoemaker, P.A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E.E. Bolton, PubChem 2019 update: improved access to chemical data, Nucleic Acids Res. 47 (2019) D1102–D1109.
[20]
J. Tang, A. Szwajda, S. Shakyawar, T. Xu, P. Hintsanen, K. Wennerberg, T. Aittokallio, Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis, J. Chem. Inf. Model. 54 (2014) 735–743.
[21]
D.H. Drewry, T.M. Willson, W.J. Zuercher, Seeding collaborations to advance kinase science with the GSK published kinase inhibitor set (PKIS), Curr. Top. Med. Chem. 14 (2014) 340–342.
[22]
S. Christmann-Franck, G.J.P. van Westen, G. Papadatos, F.B. Escudie, A. Roberts, J.P. Overington, D. Domine, Unprecedently large-scale kinase inhibitor set enabling the accurate prediction of compound-kinase activities: a way toward selective promiscuity by design?, J. Chem. Inf. Model. 56 (2016) 1654–1675.
[23]
G. Landrum, RDKit: A Software Suite for Cheminformatics, Computational Chemistry, and Predictive Modeling, Greg Landrum, 2013.
[24]
M.R. Berthold, N. Cebron, F. Dill, T.R. Gabriel, T. Kotter, T. Meinl, P. Ohl, K. Thiel, B. Wiswedel, KNIME-the Konstanz information miner: version 2.0 and beyond, AcM SIGKDD explorations Newsletter 11 (2009) 26–31.
[25]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.
[26]
F. Chollet, Keras, GitHub, 2015.
[27]
H.L. Morgan, The generation of a unique machine description for chemical structures-A technique developed at chemical abstracts service, J. Chem. Doc. 5 (2) (1965) 107–113.
[28]
A.P. Bradley, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recogn. 30 (1997) 1145–1159.
[29]
A. Golbraikh, E. Muratov, D. Fourches, A. Tropsha, Data set modelability by QSAR, J. Chem. Inf. Model. 54 (2014) 1–4.
[30]
L. Yang, A. Shami, On hyperparameter optimization of machine learning algorithms: theory and practice, Neurocomputing 415 (2020) 295–316.
[31]
B. Yuen, M.T. Hoang, X. Dong, T. Lu, Universal activation function for machine learning, Sci. Rep. 11 (2021).
[32]
N.S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, P.T.P. Tang, On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima, 2016, arXiv preprint arXiv:1609.04836.
[33]
K.V. Chuang, L.M. Gunsalus, M.J. Keiser, Learning molecular representations for medicinal chemistry, J. Med. Chem. 63 (2020) 8705–8722.
[34]
S. Kolluri, J. Lin, R. Liu, Y. Zhang, W. Zhang, Machine learning and artificial intelligence in pharmaceutical research and development: a review, AAPS J. 24 (2022) 19.
[35]
Y.C. Martin, J.L. Kofron, L.M. Traphagen, Do structurally similar molecules have similar biological activity?, J. Med. Chem. 45 (2002) 4350–4358.
[36]
H. Dowden, J. Munro, Trends in clinical success rates and therapeutic focus, Nat. Rev. Drug Discov. 18 (2019) 495–496.
[37]
J. Lyu, J.J. Irwin, B.K. Shoichet, Modeling the expansion of virtual screening libraries, Nat. Chem. Biol. (2023),.
[38]
M.D. Hofer, A. Fecko, R. Shen, S.R. Setlur, K.G. Pienta, S.A. Tomlins, A.M. Chinnaiyan, M.A. Rubin, Expression of the platelet-derived growth factor receptor in prostate cancer and treatment implications with tyrosine kinase inhibitors, Neoplasia 6 (2004) 503–512.
[39]
Y.H. Xie, Y.X. Chen, J.Y. Fang, Comprehensive review of targeted therapy for colorectal cancer, Signal Transduct. Targeted Ther. 5 (2020) 22.
[40]
R. Kanaan, C. Strange, Use of multitarget tyrosine kinase inhibitors to attenuate platelet-derived growth factor signalling in lung disease, Eur. Respir. Rev. 26 (2017).
[41]
T.E. Lin, M.W. Chao, W.C. HuangFu, H.J. Tu, Z.X. Peng, C.J. Su, T.Y. Sung, J.H. Hsieh, C.C. Lee, C.R. Yang, S.L. Pan, K.C. Hsu, Identification and analysis of a selective DYRK1A inhibitor, Biomed. Pharmacother. 146 (2022).
[42]
T.E. Lin, C.R. Yang, C.H. Chou, J.Y. Hsu, M.W. Chao, T.Y. Sung, J.H. Hsieh, W.J. Huang, K.C. Hsu, Discovery of a novel cyclin-dependent kinase 8 inhibitor with an oxindole core for anti-inflammatory treatment, Biomed. Pharmacother. 146 (2022).
[43]
J.B. Baell, G.A. Holloway, New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays, J. Med. Chem. 53 (2010) 2719–2740.
[44]
G.R. Bickerton, G.V. Paolini, J. Besnard, S. Muresan, A.L. Hopkins, Quantifying the chemical beauty of drugs, Nat. Chem. 4 (2012) 90–98.
[45]
S. Klaeger, S. Heinzlmeir, M. Wilhelm, H. Polzer, B. Vick, P.A. Koenig, M. Reinecke, B. Ruprecht, S. Petzoldt, C. Meng, J. Zecha, K. Reiter, H. Qiao, D. Helm, H. Koch, M. Schoof, G. Canevari, E. Casale, S.R. Depaolini, A. Feuchtinger, Z. Wu, T. Schmidt, L. Rueckert, W. Becker, J. Huenges, A.K. Garz, B.O. Gohlke, D.P. Zolg, G. Kayser, T. Vooder, R. Preissner, H. Hahne, N. Tonisson, K. Kramer, K. Gotze, F. Bassermann, J. Schlegl, H.C. Ehrlich, S. Aiche, A. Walch, P.A. Greif, S. Schneider, E.R. Felder, J. Ruland, G. Medard, I. Jeremias, K. Spiekermann, B. Kuster, The target landscape of clinical kinase drugs, Science 358 (2017).
[46]
T.M. Leissing, L.M. Luh, P.M. Cromm, Structure driven compound optimization in targeted protein degradation, Drug Discov. Today Technol. 37 (2020) 73–82.
[47]
P.A. Schwartz, B.W. Murray, Protein kinase biochemistry and drug discovery, Bioorg. Chem. 39 (2011) 192–210.
[48]
K.S. Metz, E.M. Deoudes, M.E. Berginski, I. Jimenez-Ruiz, B.A. Aksoy, J. Hammerbacher, S.M. Gomez, D.H. Phanstiel, Coral: clear and customizable visualization of human kinome data, Cell Syst 7 (2018) 347–350 e341.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computers in Biology and Medicine
Computers in Biology and Medicine  Volume 156, Issue C
Apr 2023
226 pages

Publisher

Pergamon Press, Inc.

United States

Publication History

Published: 01 April 2023

Author Tags

  1. Kinase
  2. Small molecule
  3. Machine learning
  4. Artificial intelligence
  5. PDGFRB inhibitor

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 23 Sep 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media