Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Exploring the binding dynamics of covalent inhibitors within active site of PLpro in SARS-CoV-2

Published: 21 November 2024 Publication History

Abstract

In the global fight against the COVID-19 pandemic caused by the highly transmissible SARS-CoV-2 virus, the search for potent medications is paramount. With a focused investigation on the SARS-CoV-2 papain-like protease (PLpro) as a promising therapeutic target due to its pivotal role in viral replication and immune modulation, the catalytic triad of PLpro comprising Cys111, His272, and Asp286, highlights Cys111 as an intriguing nucleophilic center for potential covalent bonds with ligands. The detailed analysis of the binding site unveils crucial interactions with both hydrophobic and polar residues, demonstrating the structural insights of the cavity and deepening our understanding of its molecular landscape. The sequence of PLpro among variants of concern (Alpha, Beta, Gamma, Delta and Omicron) and the recent variant of interest, JN.1, remains conserved with no mutations at the active site. Moreover, a thorough exploration of apo, non-covalently bound, and covalently bound PLpro conformations exposes significant conformational changes in loop regions, offering invaluable insights into the intricate dynamics of ligand-protein complex formation. Employing strategic in silico medication repurposing, this study swiftly identifies potential molecules for target inhibition. Within the domain of covalent docking studies and molecular dynamics, using reported inhibitors and clinically tested molecules elucidate the formation of stable covalent bonds with the cysteine residue, laying a robust foundation for potential therapeutic applications. These details not only deepen our comprehension of PLpro inhibition but also play a pivotal role in shaping the dynamic landscape of COVID-19 treatment strategies.

Graphical Abstract

Display Omitted

Highlights

Targeting the SARS-CoV-2 PLpro could be key for COVID-19 treatment due to its crucial role in viral replication and immune response modulation.
The PLpro catalytic site, particularly Cys111, is a promising target for covalent bonding, revealing structural insights for drug design.
The conservation of PLpro's active site across SARS-CoV-2 variants highlights its potential as a consistent therapeutic target.
Computational techniques identify inhibitors for PLpro, providing valuable insights for advancing COVID-19 treatment options.

References

[1]
A. Artese, V. Svicher, G. Costa, R. Salpini, V.C. Di Maio, M. Alkhatib, F.A. Ambrosio, M.M. Santoro, Y.G. Assaraf, S. Alcaro, Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses, Drug Resist. Updates 53 (2020).
[2]
I.M. Artika, A.K. Dewantari, A. Wiyatno, Molecular biology of coronaviruses: current knowledge, Heliyon 6 (2020).
[3]
K.M. Backus, B.E. Correia, K.M. Lum, S. Forli, B.D. Horning, G.E. González-Páez, S. Chatterjee, B.R. Lanning, J.R. Teijaro, A.J. Olson, Proteome-wide covalent ligand discovery in native biological systems, Nature 534 (2016) 570–574.
[4]
Y.M. Báez-Santos, S.E.S. John, A.D. Mesecar, The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds, Antivir. Res. 115 (2015) 21–38.
[5]
N. Barretto, D. Jukneliene, K. Ratia, Z. Chen, A.D. Mesecar, S.C. Baker, The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity, J. Virol. 79 (2005) 15189–15198.
[6]
D. Benvenuto, M. Giovanetti, A. Ciccozzi, S. Spoto, S. Angeletti, M. Ciccozzi, The 2019-new coronavirus epidemic: evidence for virus evolution, J. Med. Virol. 92 (2020) 455–459.
[7]
J. Cui, F. Li, Z.-L. Shi, Origin and evolution of pathogenic coronaviruses, Nat. Rev. Microbiol. 17 (2019) 181–192.
[8]
S. De Cesco, J. Kurian, C. Dufresne, A.K. Mittermaier, N. Moitessier, Covalent inhibitors design and discovery, Eur. J. Med. Chem. 138 (2017) 96–114.
[9]
C.P. Delgado, J.B.T. Rocha, L. Orian, M. Bortoli, P.A. Nogara, In silico studies of Mpro and PLpro from SARS-CoV-2 and a new class of cephalosporin drugs containing 1, 2, 4-thiadiazole, Struct. Chem. 33 (2022) 2205–2220.
[10]
S.G. Devaraj, N. Wang, Z. Chen, Z. Chen, M. Tseng, N. Barretto, R. Lin, C.J. Peters, C.-T.K. Tseng, S.C. Baker, Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus, J. Biol. Chem. 282 (2007) 32208–32221.
[11]
A.W. Edridge, J. Kaczorowska, A.C. Hoste, M. Bakker, M. Klein, M.F. Jebbink, A. Matser, C.M. Kinsella, P. Rueda, M. Prins, Human coronavirus reinfection dynamics: lessons for SARS-CoV-2, MedRxiv 2020 (2020) 05. 11.20086439.
[12]
Z. Fu, B. Huang, J. Tang, S. Liu, M. Liu, Y. Ye, Z. Liu, Y. Xiong, W. Zhu, D. Cao, The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery, Nat. Commun. 12 (2021) 488.
[13]
X. Gao, B. Qin, P. Chen, K. Zhu, P. Hou, J.A. Wojdyla, M. Wang, S. Cui, Crystal structure of SARS-CoV-2 papain-like protease, Acta Pharm. Sin. B 11 (2021) 237–245.
[14]
S.K. Gayatri, V. Chhabra, H. Kumar, M.E. Sobhia, Identification of prospective covalent inhibitors for SARS-CoV-2 main protease using structure-based approach, J. Biomol. Struct. Dyn. (2022) 1–18.
[15]
S.K. Gayatri, V. Chhabra, H. Kumar, M.E. Sobhia, Identification of prospective covalent inhibitors for SARS-CoV-2 main protease using structure-based approach, J. Biomol. Struct. Dyn. 41 (2023) 7913–7930.
[16]
Y.-S. Han, G.-G. Chang, C.-G. Juo, H.-J. Lee, S.-H. Yeh, J.T.-A. Hsu, X. Chen, Papain-like protease 2 (PLP2) from severe acute respiratory syndrome coronavirus (SARS-CoV): expression, purification, characterization, and inhibition, Biochemistry 44 (2005) 10349–10359.
[17]
B.H. Harcourt, D. Jukneliene, A. Kanjanahaluethai, J. Bechill, K.M. Severson, C.M. Smith, P.A. Rota, S.C. Baker, Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity, J. Virol. 78 (2004) 13600–13612.
[18]
S.A. Hollingsworth, R.O. Dror, Molecular dynamics simulation for all, Neuron 99 (2018) 1129–1143.
[19]
D. Jade, S. Ayyamperumal, V. Tallapaneni, C.M.J. Nanjan, S. Barge, S. Mohan, M.J. Nanjan, Virtual high throughput screening: Potential inhibitors for SARS-CoV-2 PLPRO and 3CLPRO proteases, Eur. J. Pharmacol. 901 (2021).
[20]
G. Kalibaeva, M. Ferrario, G. Ciccotti, Constant pressure-constant temperature molecular dynamics: a correct constrained NPT ensemble using the molecular virial, Mol. Phys. 101 (2003) 765–778.
[21]
S. Khare, C. Gurry, L. Freitas, M.B. Schultz, G. Bach, A. Diallo, N. Akite, J. Ho, R.T. Lee, W. Yeo, GISAID’s role in pandemic response, China CDC Wkly. 3 (2021) 1049.
[22]
H. Kim, D. Hauner, J.A. Laureanti, K. Agustin, S. Raugei, N. Kumar, Mechanistic investigation of SARS-CoV-2 main protease to accelerate design of covalent inhibitors, Sci. Rep. 12 (2022).
[23]
A. Koirala, Y.J. Joo, A. Khatami, C. Chiu, P.N. Britton, Vaccines for COVID-19: the current state of play, Paediatr. Respir. Rev. 35 (2020) 43–49.
[24]
S.S. Krishna, I. Majumdar, N.V. Grishin, Survey and summary: structural classification of zinc fingers, Nucleic Acids Res. 31 (2003) 532.
[25]
H.A. Lindner, N. Fotouhi-Ardakani, V. Lytvyn, P. Lachance, T. Sulea, R. Ménard, The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme, J. Virol. 79 (2005) 15199–15208.
[26]
R. Lonsdale, R.A. Ward, Structure-based design of targeted covalent inhibitors, Chem. Soc. Rev. 47 (2018) 3816–3830.
[27]
C. Ma, M.D. Sacco, Z. Xia, G. Lambrinidis, J.A. Townsend, Y. Hu, X. Meng, T. Szeto, M. Ba, X. Zhang, Discovery of SARS-CoV-2 papain-like protease inhibitors through a combination of high-throughput screening and a FlipGFP-based reporter assay, ACS Cent. Sci. 7 (2021) 1245–1260.
[28]
F. Madeira, M. Pearce, A.R. Tivey, P. Basutkar, J. Lee, O. Edbali, N. Madhusoodanan, A. Kolesnikov, R. Lopez, Search and sequence analysis tools services from EMBL-EBI in 2022, Nucleic Acids Res. 50 (2022) W276–W279.
[29]
R. Mah, J.R. Thomas, C.M. Shafer, Drug discovery considerations in the development of covalent inhibitors, Bioorg. Med. Chem. Lett. 24 (2014) 33–39.
[30]
Y.A. Malik, Properties of coronavirus and SARS-CoV-2, Malays. J. Pathol. 42 (2020) 3–11.
[31]
J. Osipiuk, S.-A. Azizi, S. Dvorkin, M. Endres, R. Jedrzejczak, K.A. Jones, S. Kang, R.S. Kathayat, Y. Kim, V.G. Lisnyak, Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors, Nat. Commun. 12 (2021) 743.
[32]
A.K. Padhi, S.L. Rath, T. Tripathi, Accelerating COVID-19 research using molecular dynamics simulation, J. Phys. Chem. B 125 (2021) 9078–9091.
[33]
A. Palayew, O. Norgaard, K. Safreed-Harmon, T.H. Andersen, L.N. Rasmussen, J.V. Lazarus, Pandemic publishing poses a new COVID-19 challenge, Nat. Hum. Behav. 4 (2020) 666–669.
[34]
S. Rauch, E. Jasny, K.E. Schmidt, B. Petsch, New vaccine technologies to combat outbreak situations, Front. Immunol. 9 (2018) 1963.
[35]
G.S. Rieder, P.A. Nogara, F.B. Omage, T. Duarte, C.L. Dalla Corte, J.B.T. da Rocha, Computational analysis of the interactions between Ebselen and derivatives with the active site of the main protease from SARS-CoV-2, Comput. Biol. Chem. 107 (2023).
[36]
R.L. Roper, K.E. Rehm, SARS vaccines: where are we?, Expert Rev. Vaccin. 8 (2009) 887–898.
[37]
W. Rut, Z. Lv, M. Zmudzinski, S. Patchett, D. Nayak, S.J. Snipas, F. El Oualid, T.T. Huang, M. Bekes, M. Drag, Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: a framework for anti–COVID-19 drug design, Sci. Adv. 6 (2020) eabd4596.
[38]
B. Sanders, S. Pohkrel, A. Labbe, I. Mathews, C. Cooper, R. Davidson, G. Phillips, K. Weiss, Q. Zhang, H. O’Neill, Research square, Potent Sel. covalent Inhib. papain- Protease SARS-CoV-2 (2021).
[39]
B.C. Sanders, S. Pokhrel, A.D. Labbe, I.I. Mathews, C.J. Cooper, R.B. Davidson, G. Phillips, K.L. Weiss, Q. Zhang, H. O’Neill, Potent and selective covalent inhibition of the papain-like protease from SARS-CoV-2, Nat. Commun. 14 (2023) 1733.
[40]
S. Satarker, M. Nampoothiri, Structural proteins in severe acute respiratory syndrome coronavirus-2, Arch. Med. Res. 51 (2020) 482–491.
[41]
D. Schoeman, B.C. Fielding, Coronavirus envelope protein: current knowledge, Virol. J. 16 (2019) 1–22.
[42]
Z. Shen, K. Ratia, L. Cooper, D. Kong, H. Lee, Y. Kwon, Y. Li, S. Alqarni, F. Huang, O. Dubrovskyi, Design of SARS-CoV-2 PLpro inhibitors for COVID-19 antiviral therapy leveraging binding cooperativity, J. Med. Chem. 65 (2021) 2940–2955.
[43]
Z. Shen, K. Ratia, L. Cooper, D. Kong, H. Lee, Y. Kwon, Y. Li, S. Alqarni, F. Huang, O. Dubrovskyi, Potent, novel SARS-CoV-2 PLpro inhibitors block viral replication in monkey and human cell cultures, BioRxiv (2021) 2021.02. 13.431008.
[44]
D. Shin, R. Mukherjee, D. Grewe, D. Bojkova, K. Baek, A. Bhattacharya, L. Schulz, M. Widera, A.R. Mehdipour, G. Tascher, Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity, Nature 587 (2020) 657–662.
[45]
J. Singh, The ascension of targeted covalent inhibitors, J. Med. Chem. 65 (2022) 5886–5901.
[46]
F. Sutanto, M. Konstantinidou, A. Dömling, Covalent inhibitors: a rational approach to drug discovery, RSC Med. Chem. 11 (2020) 876–884.
[47]
H. Tan, Y. Hu, P. Jadhav, B. Tan, J. Wang, Progress and challenges in targeting the SARS-CoV-2 papain-like protease, J. Med. Chem. 65 (2022) 7561–7580.
[48]
B. Tan, X. Zhang, A. Ansari, P. Jadhav, H. Tan, K. Li, A. Chopra, A. Ford, X. Chi, F.X. Ruiz, Design of a SARS-CoV-2 papain-like protease inhibitor with antiviral efficacy in a mouse model, Science 383 (2024) 1434–1440.
[49]
Y.-F. Tu, C.-S. Chien, A.A. Yarmishyn, Y.-Y. Lin, Y.-H. Luo, Y.-T. Lin, W.-Y. Lai, D.-M. Yang, S.-J. Chou, Y.-P. Yang, A review of SARS-CoV-2 and the ongoing clinical trials, Int. J. Mol. Sci. 21 (2020) 2657.
[50]
E. Weglarz-Tomczak, J.M. Tomczak, M. Talma, M. Burda-Grabowska, M. Giurg, S. Brul, Identification of ebselen and its analogues as potent covalent inhibitors of papain-like protease from SARS-CoV-2, Sci. Rep. 11 (2021) 1–10.
[51]
C. Wu, Y. Liu, Y. Yang, P. Zhang, W. Zhong, Y. Wang, Q. Wang, Y. Xu, M. Li, X. Li, Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, Acta Pharm. Sin. B 10 (2020) 766–788.
[52]
A.A. Yameny, The COVID-19 JN. 1 variant diagnosed in Egypt, J. Med. Life Sci. 5 (2023) 318–321.

Index Terms

  1. Exploring the binding dynamics of covalent inhibitors within active site of PLpro in SARS-CoV-2
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Computational Biology and Chemistry
    Computational Biology and Chemistry  Volume 112, Issue C
    Oct 2024
    820 pages

    Publisher

    Elsevier Science Publishers B. V.

    Netherlands

    Publication History

    Published: 21 November 2024

    Author Tags

    1. SARS-CoV-2
    2. Papain-like protease (PLpro)
    3. Covalent bonding
    4. Molecular dynamics
    5. Drug repurposing

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 27 Nov 2024

    Other Metrics

    Citations

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media