Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Matrix valued Hermite polynomials, Burchnall formulas and non-abelian Toda lattice

Published: 01 September 2019 Publication History

Abstract

A general family of matrix valued Hermite type orthogonal polynomials is introduced as the matrix orthogonal polynomials with respect to a weight. The matrix polynomials are eigenfunctions of a matrix differential equation. For the weight we derive Pearson equations, which allow us to derive many explicit properties of these matrix polynomials. In particular, the matrix polynomials are eigenfunctions to another matrix differential equation. We also obtain for these polynomials shift operators, a Rodrigues formula, explicit expressions for the squared norm, explicit three term recurrence relations, etc. The matrix entries of the matrix polynomials can be expressed in terms of scalar Hermite and dual Hahn polynomials. We also derive a connection formula for the matrix Hermite polynomials. Next we show that operational Burchnall formulas extend to matrix polynomials. We make this explicit for the matrix Hermite polynomials and for previously introduced matrix Gegenbauer type orthogonal polynomials. The Burchnall approach gives two descriptions of the matrix valued orthogonal polynomials for the Toda modification of the matrix Hermite weight. In particular, we obtain an explicit non-trivial solution to the non-abelian Toda lattice equations.

References

[1]
C. Álvarez-Fernández, G. Ariznabarreta, J.C. García-Ardila, M. Mañas, F. Marcellán, Christoffel transformations for matrix orthogonal polynomials in the real line and the non-Abelian 2D Toda lattice hierarchy, Int. Math. Res. Not. 2017 (2017) 1285–1341.
[2]
G.E. Andrews, R.A. Askey, R. Roy, Special Functions, Cambridge Univ. Press, 1999.
[3]
A.I. Aptekarev, E.M. Nikishin, The scattering problem for a discrete Sturm-Liouville operator, Math. USSR, Sb. 49 (1984) 325–355.
[4]
R. Askey, J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (319) (1985).
[5]
O. Babelon, D. Bernard, M. Talon, Introduction to Classical Integrable Systems, Cambridge Univ. Press, 2003.
[6]
A. Belogrudov, Semi-classical orthogonal polynomials and integrable chains, in: V.B. Priezzhev, V.P. Spiridonov (Eds.), Self-Similar Systems, Dubna, 1999, pp. 301–305.
[7]
M. Bruschi, S.V. Manakov, O. Ragnisco, D. Levi, The nonabelian Toda lattice-discrete analogue of the matrix Schrödinger spectral problem, J. Math. Phys. 21 (1980) 2749–2753.
[8]
J.L. Burchnall, A note on the polynomials of Hermite, Quart. J. Math. Oxf. 12 (1941) 9–11.
[9]
L. Cagliero, T.H. Koornwinder, Explicit matrix inverses for lower triangular matrices with entries involving Jacobi polynomials, J. Approx. Theory 193 (2015) 20–38.
[10]
M.J. Cantero, L. Moral, L. Velázquez, Matrix orthogonal polynomials whose derivatives are also orthogonal, J. Approx. Theory 146 (2007) 174–211.
[11]
Casper, W.R.; Yakimov, M. : The matrix Bochner problem. arXiv:1803.04405.
[12]
D. Damanik, A. Pushnitski, B. Simon, The analytic theory of matrix orthogonal polynomials, Surv. Approx. Theory 4 (2008) 1–85.
[13]
A.J. Durán, A method to find weight matrices having symmetric second-order differential operators with matrix leading coefficient, Constr. Approx. 29 (2009) 181–205.
[14]
A.J. Durán, F.A. Grünbaum, Orthogonal matrix polynomials satisfying second-order differential equations, Int. Math. Res. Not. 2004 (2004) 461–484.
[15]
A.J. Durán, W. Van Assche, Orthogonal matrix polynomials and higher-order recurrence relations, Linear Algebra Appl. 219 (1995) 261–280.
[16]
G. Gasper, Projection formulas for orthogonal polynomials of a discrete variable, J. Math. Anal. Appl. 45 (1974) 176–198.
[17]
M. Gekhtman, Hamiltonian structure of non-Abelian Toda lattice, Lett. Math. Phys. 46 (1998) 189–205.
[18]
J.S. Geronimo, Scattering theory and matrix orthogonal polynomials on the real line, Circuits Systems Signal Process. 1 (1982) 471–495.
[19]
W. Groenevelt, M.E.H. Ismail, E. Koelink, Spectral theory and matrix valued orthogonal polynomials, Adv. Math. 244 (2013) 91–105.
[20]
W. Groenevelt, E. Koelink, A hypergeometric function transform and matrix-valued orthogonal polynomials, Constr. Approx. 38 (2013) 277–309.
[21]
F.A. Grünbaum, I. Pacharoni, J. Tirao, Matrix valued spherical functions associated to the complex projective plane, J. Funct. Anal. 188 (2002) 350–441.
[22]
F.A. Grünbaum, J. Tirao, The algebra of differential operators associated to a weight matrix, Integral Equations Operator Theory 58 (2007) 449–475.
[23]
F.A. Grünbaum, M.D. de la Iglesia, A. Martínez-Finkelshtein, Properties of matrix orthogonal polynomials via their Riemann-Hilbert characterization, SIGMA Symmetry Integrability Geom. Methods Appl. 7 (2011).
[24]
G. Heckman, M. van Pruijssen, Matrix valued orthogonal polynomials for Gelfand pairs of rank one, Tohoku Math. J. (2) 68 (2016) 407–436.
[25]
M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge Univ. Press, 2009.
[26]
M.E.H. Ismail, E. Koelink, P. Román, Generalized Burchnall-type identities for orthogonal polynomials and expansions, SIGMA Symmetry Integrability Geom. Methods Appl. 14 (2018).
[27]
R. Koekoek, P.A. Lesky, R.F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues, Springer, 2010.
[28]
Koekoek, R.; Swarttouw, R.F. : The Askey-Scheme of Hypergeometric Orthogonal Polynomials and Its q-Analogue. online at http://aw.twi.tudelft.nl/~koekoek/askey.html Report 98-17 The Askey-Scheme of Hypergeometric Orthogonal Polynomials and Its q-Analogue, Technical University Delft, 1998.
[29]
E. Koelink, P. Román, Orthogonal vs. non-orthogonal reducibility of matrix valued measures, SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016).
[30]
E. Koelink, A.M. de Ríos, P. Román, Matrix-valued Gegenbauer-type polynomials, Constr. Approx. 46 (2017) 459–487.
[31]
E. Koelink, M. van Pruijssen, P. Román, Matrix-valued orthogonal polynomials related to ( SU ( 2 ) × SU ( 2 ), diag ), Int. Math. Res. Not. 2012 (2012) 5673–5730.
[32]
E. Koelink, M. van Pruijssen, P. Román, Matrix-valued orthogonal polynomials related to ( SU ( 2 ) × SU ( 2 ), diag ), II, Publ. Res. Inst. Math. Sci. 49 (2013) 271–312.
[33]
T.H. Koornwinder, Dual addition formulas associated with dual product formulas, in: M.Z. Nashed, X. Li (Eds.), Frontiers in Orthogonal Polynomials and q-Series, World Scientific, 2018, pp. 373–392.
[34]
M.G. Krein, Infinite J-matrices and a matrix moment problem, Dokl. Akad. Nauk SSSR 69 (1949) 125–128.
[35]
M.G. Krein, Fundamental aspects of the representation theory of Hermitian operators with deficiency index ( m, m ), Amer. Math. Soc. Transl. Ser. 2 97 (1971) 75–143.
[36]
J. Tirao, I. Zurrián, Reducibility of matrix weights, Ramanujan J. 45 (2018) 349–374.
[37]
M. van Pruijssen, Multiplicity free induced representations and orthogonal polynomials, Int. Math. Res. Not. 2018 (2018) 2208–2239.
[38]
van Pruijssen, M.; Román, P. : Deformation of matrix valued orthogonal polynomials related to Gelfand pairs. arXiv:1610.01257.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Advances in Applied Mathematics
Advances in Applied Mathematics  Volume 110, Issue C
Sep 2019
412 pages

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 September 2019

Author Tags

  1. 33C45
  2. 42C50
  3. 37K10
  4. 38B42

Author Tags

  1. Matrix orthogonal polynomials
  2. Non-abelian Toda lattice
  3. Burchnall identities

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media