Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Complexity of model testing for dynamical systems with toric steady states

Published: 01 September 2019 Publication History

Abstract

In this paper we investigate the complexity of model selection and model testing for dynamical systems with toric steady states. Such systems frequently arise in the study of chemical reaction networks. We do this by formulating these tasks as a constrained optimization problem in Euclidean space. This optimization problem is known as a Euclidean distance problem; the complexity of solving this problem is measured by an invariant called the Euclidean distance (ED) degree. We determine closed-form expressions for the ED degree of the steady states of several families of chemical reaction networks with toric steady states and arbitrarily many reactions. To illustrate the utility of this work we show how the ED degree can be used as a tool for estimating the computational cost of solving the model testing and model selection problems.

References

[1]
K. Aoki, M. Yamada, K. Kunida, S. Yasuda, M. Matsuda, Processive phosphorylation of ERK MAP kinase in mammalian cells, Proc. Natl. Acad. Sci. USA 108 (31) (2011) 12675–12680.
[2]
B.E. Aubol, S. Chakrabarti, J. Ngo, J. Shaffer, B. Nolen, X.-D. Fu, G. Gourisankar, J.A. Adams, Processive phosphorylation of alternative splicing factor/splicing factor 2, Proc. Natl. Acad. Sci. USA 100 (22) (2003) 12601–12606.
[3]
Bates, D.J.; Hauenstein, J.D.; Sommese, A.J.; Wampler, Charles W. : Bertini: software for numerical algebraic geometry. available at bertini.nd.edu with permanent https://doi.org/10.7274/R0H41PB5.
[4]
S.C. Blanchard, R.L. Gonzalez, H.D. Kim, S. Chu, J.D. Puglisi, tRNA selection and kinetic proofreading in translation, Nat. Struct. Mol. Biol. 11 (10) (2004) 1008–1014.
[5]
W.R. Burack, T.W. Sturgill, The activating dual phosphorylation of MAPK by MEK is nonprocessive, Biochemistry 36 (20) (1997) 5929–5933.
[6]
M. Casanellas, J. Fernández-Sánchez, M. Michalek, Local equations for equivariant evolutionary models, Adv. Math. 315 (2017 Jul 31) 285–323.
[7]
V. Chellaboina, S. Bhat, W. Haddad, D. Bernstein, Modeling and analysis of mass-action kinetics, IEEE Control Syst. 29 (4) (2009) 60–78.
[8]
P. Cohen, The role of protein phosphorylation in human health and disease, Eur. J. Biochem. 268 (19) (2001) 5001–5010.
[9]
M. Compagnoni, R. Notari, F. Antonacci, A. Sarti, A comprehensive analysis of the geometry of TDOA maps in localization problems, Inverse Probl. 30 (3) (2014 Feb 6).
[10]
Compagnoni, M.A.; Canclini, A.; Bestagini, P.A.; Antonacci, F.A.; Sarti, A.; Tubaro, S. (2015 Sep): TDOA denoising for acoustic source localization. CoRR arXiv:1509.02380.
[11]
L. Condat, A. Hirabayashi, Cadzow denoising upgraded: a new projection method for the recovery of Dirac pulses from noisy linear measurements, Sampl. Theory Signal Image Process. 14 (1) (2015) 17–47.
[12]
C. Conradi, A. Shiu, A global convergence result for processive multisite phosphorylation systems, Bull. Math. Biol. 77 (1) (2015) 126–155.
[13]
Conradi, C.; Shiu, A. (2017): Dynamics of post-translational modification systems: recent progress and future directions. arXiv preprint arXiv:1705.10913.
[14]
D. Cox, J. Little, H. Schenck, Toric Varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011.
[15]
G. Craciun, A. Dickenstein, A. Shiu, B. Sturmfels, Toric dynamical systems, J. Symbolic Comput. 44 (11) (2009) 1551–1565.
[16]
R.J. Deshaies, J.E. Ferrell, Multisite phosphorylation and the countdown to S phase, Cell 107 (7) (2001) 819–822.
[17]
J. Draisma, E. Horobeţ, G. Ottaviani, B. Sturmfels, R. Thomas, The Euclidean distance degree of an algebraic variety, Found. Comput. Math. 16 (2016) 99–149.
[18]
J.C. Faugere, P. Gianni, D. Lazard, T. Mora, Efficient computation of zero-dimensional Gröbner bases by change of ordering, J. Symbolic Comput. (ISSN ) 16 (4) (1993) 329–344.
[19]
M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors-I. The deficiency zero and deficiency one theorems, Chem. Eng. Sci. 42 (10) (1987) 2229–2268.
[20]
M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors-II. Multiple steady states for networks of deficiency one, Chem. Eng. Sci. 43 (1) (1988) 1–25.
[21]
J.E. Ferrell, R.R. Bhatt, Mechanistic studies of the dual phosphorylation of mitogen-activated protein kinase, J. Biol. Chem. 272 (30) (1997) 19008–19016.
[22]
G. Fløystad, J. Kileel, G. Ottaviani, The Chow form of the essential variety in computer vision, J. Symbolic Comput. (2017 Apr 5).
[23]
S. Friedland, M. Stawiska, Some approximation problems in semi-algebraic geometry, Banach Center Publ. 107 (1) (2015) 133–147.
[24]
Friedland, S.; Stawiska, M. : Best approximation on semi-algebraic sets and k-border rank approximation of symmetric tensors. arXiv:1311.1561.
[25]
W. Fulton, Introduction to Toric Varieties, Princeton University Press, 1993.
[26]
I.M. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, 1994.
[27]
E. Gross, B. Davis, K.L. Ho, D.J. Bates, H.A. Harrington, Numerical algebraic geometry for model selection and its application to the life sciences, J. R. Soc. Interface 13 (123) (2016).
[28]
E. Gross, H.A. Harrington, Z. Rosen, B. Sturmfels, Algebraic systems biology: a case study for the Wnt pathway, Bull. Math. Biol. 78 (1) (2016) 21–51.
[29]
P. Gual, Y. Le Marchand-Brustel, J.-F. Tanti, Positive and negative regulation of insulin signaling through IRS-1 phosphorylation, Biochemistry 87 (1) (2005) 99–109.
[30]
J. Gunawardena, Chemical reaction network theory for in-silico biologists, preprint, 2003.
[31]
Helmer, M.; Sturmfels, B. (2016): Nearest points on toric varieties. arXiv:1603.06544v2.
[32]
K. Holstein, D. Flockerzi, C. Conradi, Multistationarity in sequential distributed multisite phosphorylation networks, Bull. Math. Biol. 75 (11) (2013) 2028–2058.
[33]
J.J. Hopfield, Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity, Proc. Natl. Acad. Sci. USA 71 (10) (1974) 4135–4139.
[34]
I. Iacovache, M. Bischofberger, F.G. van der Goot, Structure and assembly of pore-forming proteins, Curr. Opin. Struck. Biol. 20 (2) (2010) 241–246.
[35]
B. Joshi, A. Shiu, A survey of methods for deciding whether a reaction network is multistationary, Special Issue on “Chemical Dynamics”, Math. Model. Nat. Phenom. 10 (2015) 47–67.
[36]
H. Kitano, Systems Biology: A Brief Overview, Science, 2002, pp. 1662–1664.
[37]
A.A. Lee, M.J. Senior, M.I. Wallace, T.E. Woolley, I.M. Griffiths, Dissecting the self-assembly kinetics of multimeric pore-forming toxins, J. R. Soc. Interface 13 (114) (2016).
[38]
F.C.O. Los, T.M. Randis, R.V. Aroian, A.J. Ratner, Role of pore-forming toxins in bacterial infectious diseases, Microbiol. Mol. Biol. Rev. 77 (2) (2013) 173–207.
[39]
C.-T. Ma, A. Velazquez-Dones, J.C. Hagopian, G. Ghosh, X.-D. Fu, J.A. Adams, Ordered multi-site phosphorylation of the splicing factor ASF/SF2 by SRPK1, J. Mol. Biol. 376 (1) (2008) 55–68.
[40]
R. Mahadevan, J.S. Edwards, F.J. Doyle, Dynamic flux balance analysis of diauxic growth in Escherichia coli, Biophys. J. 83 (3) (2002) 1331–1340.
[41]
T.W. McKeithan, Kinetic proofreading in T-cell receptor signal transduction, Proc. Natl. Acad. Sci. USA 92 (1995) 5042–5046.
[42]
L. Michaelis, M.L. Menten, Die Kinetik der Invertinwirkung, Biochem. Z. 49 (1913) 333–369.
[43]
M.P. Millan, A. Dickenstein, A. Shiu, C. Conradi, Chemical reaction systems with toric steady states, Bull. Math. Biol. 74 (5) (2012) 1027–1065.
[44]
D. Mumford, Algebraic Geometry: Complex Projective Varieties, vol. 1, Springer Science & Business Media, 1995 Feb 15.
[45]
P. Nash, X. Tang, S. Orlicky, Q. Chen, F.B. Gertler, M.D. Mendenhall, F. Sicheri, T. Pawson, M. Tyers, Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication, Nature 414 (6863) (2001) 514–521.
[46]
G. Ottaviani, P-J. Spaenlehauer, B. Sturmfels, Exact solutions in structured low-rank approximation, SIAM J. Matrix Anal. Appl. 35 (4) (2014 Dec 11) 1521–1542.
[47]
L. Pachter, B. Sturmfels, Algebraic Statistics for Computational Biology, Cambridge University Press, 2005.
[48]
R. Piene, Polar classes of singular varieties, Ann. Sci. Éc. Norm. Supér. 11 (1978) 247–276.
[49]
R. Roberts, N.A. Timchenko, J.W. Miller, S. Reddy, C.T. Caskey, M.S. Swanson, L.T. Timchenko, Altered phosphorylation and intracellular distribution of a (CUG)n triplet repeat RNA-binding protein in patients with myotonic dystrophy and in myotonin protein kinase knockout mice, Proc. Natl. Acad. Sci. USA 94 (24) (1997) 13221–13226.
[50]
C.J. Rosado, A.M. Buckle, R.H.P. Law, R.E. Butcher, W.-T. Kan, C.H. Bird, et al., A common fold mediates vertebrate defense and bacterial attack, Science 317 (5844) (2007).
[51]
B.Y. Rubinstein, H.H. Mattingly, A.M. Berezhkovskii, S.Y. Shvartsman, Long-term dynamics of multisite phosphorylation, Mol. Biol. Cell 27 (14) (2016) 2331–2340.
[52]
C. Salazar, T. Höfer, Multisite protein phosphorylation - from molecular mechanisms to kinetic models, FEBS J. 276 (12) (2009) 3177–3198.
[53]
E.D. Sontag, Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction, IEEE Trans. Automat. Control 46 (7) (2001) 1028–1047.
[54]
F. Sottile, Real Solutions to Equations from Geometry, vol. 57, American Mathematical Society, 2011.
[55]
A. Stegeman, S. Friedland, On best rank-2 and rank-(2, 2, 2) approximations of order-3 tensors, Linear Multilinear Algebra 65 (7) (2017 Jul 3) 1289–1310.
[56]
B. Sturmfels, Gröbner Bases and Convex Polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996.
[57]
The Sage Developers (2016): SageMath, the Sage Mathematics Software System (Version 7.2). http://www.sagemath.org.
[58]
M. Thomson, J. Gunawardena, The rational parameterisation theorem for multisite post-translational modification systems, J. Theoret. Biol. 261 (4) (2002) 626–636.
[59]
M. Trager, M. Hebert, J. Ponce, The joint image handbook, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 909–917.
[60]
A. Velazquez-Dones, J.C. Hagopian, C.-T. Ma, X.-Y. Zhong, H. Zhou, G. Ghosh, X.-D. Fu, J.A. Adams, Mass spectrometric and kinetic analysis of ASF/SF2 phosphorylation by SRPK1 and Clk/Sty, J. Biol. Chem. 280 (50) (2005) 41761–41768.
[61]
J. Verschelde, Algorithm 795, PHCpack: a general-purpose solver for polynomial systems by homotopy continuation, ACM Trans. Math. Software 25 (2) (1999) 251–276.
[62]
I. Voskoboinik, M.J. Smyth, J.A. Trapani, Perforin-mediated target-cell death and immune homeostasis, Nat. Rev., Immunol. 6 (12) (2006) 940–952.
[63]
W.F. Waas, H.H. Lo, K.N. Dalby, The kinetic mechanism of the dual phosphorylation of the ATF2 transcription factor by p38 mitogen-activated protein (MAP) kinase alpha. Implications for signal/response profiles of MAP kinase pathways, J. Biol. Chem. 276 (8) (2001) 5676–5684.
[64]
P.Y. Yu, G. Craciun, Mathematical analysis of chemical reaction systems, Isr. J. Chem. (2018).

Index Terms

  1. Complexity of model testing for dynamical systems with toric steady states
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image Advances in Applied Mathematics
          Advances in Applied Mathematics  Volume 110, Issue C
          Sep 2019
          412 pages

          Publisher

          Academic Press, Inc.

          United States

          Publication History

          Published: 01 September 2019

          Author Tags

          1. 37Nxx
          2. 92Exx
          3. 92C42
          4. 14Qxx
          5. 13Pxx
          6. 52B20
          7. 52B35

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • 0
            Total Citations
          • 0
            Total Downloads
          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 21 Dec 2024

          Other Metrics

          Citations

          View Options

          View options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media