Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Adaptive finite element approximation of bilinear optimal control problem with fractional Laplacian

Published: 16 September 2024 Publication History

Abstract

We investigate the application of a posteriori error estimate to a fractional optimal control problem with pointwise control constraints. Specifically, we address a problem in which the state equation is formulated as an integral form of the fractional Laplacian equation, with the control variable embedded within the state equation as a coefficient. We propose two distinct finite element discretization approaches for an optimal control problem. The first approach employs a fully discrete scheme where the control variable is discretized using piecewise constant functions. The second approach, a semi-discrete scheme, does not discretize the control variable. Using the first-order optimality condition, the second-order optimality condition, and a solution regularity analysis for the optimal control problem, we devise a posteriori error estimates. Based on the established error estimates framework, an adaptive refinement strategy is developed to help achieve the optimal convergence rate. Numerical experiments are given to illustrate the theoretical findings.

References

[1]
Gatto P and Hesthaven JS Numerical approximation of the fractional Laplacian via hp-finite elements, with an application to image denoising J. Sci. Comput. 2015 65 1 249-270
[2]
Faustmann M, Melenk JM, and Praetorius D Quasi-optimal convergence rate for an adaptive method for the integral fractional Laplacian Math. Comput. 2021 90 330 1557-1587
[3]
Hu, H.Z., Chen, Y.P., Zhou, J.W.: Two-grid finite element method for time-fractional nonlinear Schro¨dinger equation. J. Comput. Math. 42(4), 1124–1144 (2024)
[4]
Zheng XC and Wang H An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes SIAM J. Numer. Anal. 2020 58 330-352
[5]
Acosta G and Borthagaray JP A fractional Laplace equation: regularity of solutions and finite element approximations SIAM J. Numer. Anal. 2017 55 2 472-495
[6]
Borthagaray JP, Leykekhman D, and Nochetto RH Local energy estimates for the fractional Laplacian SIAM J. Numer. Anal. 2021 59 4 1918-1947
[7]
Acosta G, Bersetche FM, and Borthagaray GP A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian Comput. Math. Appl. 2017 74 784-816
[8]
Borthagaray JP and Nochetto RH Besov regularity for the Dirichlet integral fractional Laplacian in Lipschitz domains J. Funct. Anal. 2023 284 6
[9]
Zheng XC, Ervin VJ, and Wang H Optimal Petrov–Galerkin spectral approximation method for the fractional diffusion, advection, reaction equation on a bounded interval J. Sci. Comput. 2021 86 29
[10]
Yu B, Zheng XC, Zhang PW, and Zhang L Computing solution landscape of nonlinear space-fractional problems via fast approximation algorithm J. Comput. Phys. 2022 468
[11]
Lions JL Optimal Control of Systems Governed by Partial Differential Equations 1971 Berlin Springer
[12]
Kröner A and Vexler B A priori error estimates for elliptic optimal control problems with a bilinear state equation J. Comput. Appl. Math. 2009 230 2 781-802
[13]
Winkler M Error estimates for the finite element approximation of bilinear boundary control problems Comput. Optim. Appl. 2020 76 155-199
[14]
Hu WW, Liu J, and Wang Z Bilinear control of convection-cooling: from open-loop to closed-loop Appl. Math. Optim. 2022 86 5
[15]
Borzi A, Park E-J, and Lass MV Multigrid optimization methods for the optimal control of convection–diffusion problems with bilinear control J. Optim. Theory Appl. 2015 168 2 510-533
[16]
Shakya P and Sinha RK Finite element method for parabolic optimal control problems with a bilinear state equation J. Comput. Appl. Math. 2020 367
[17]
Xu C, Ou YS, and Schuster E Sequential linear quadratic control of bilinear parabolic PDEs based on POD model reduction Automatica 2011 47 418-426
[18]
Casas E, Wachsmuth D, and Wachsmuth G Second-order analysis and numerical approximation for bang-bang bilinear control problems SIAM J. Control. Optim. 2018 56 6 4203-4227
[19]
Bersetche F, Fuica F, Otárola E, and Quero D Bilinear optimal control for the fractional Laplacian: analysis and discretization SIAM J. Numer. Anal. 2024 62 3 1021-1464
[20]
Constantin P and Wu J Behavior of solutions of 2D quasi-geostrophic equations SIAM J. Math. Anal. 1999 30 937-948
[21]
Liu WB and Yan NN A posteriori error estimates for convex boundary control problems SIAM J. Numer. Anal. 2001 39 1 73-99
[22]
Li R, Liu WB, Ma HP, and Tang T Adaptive finite element approximation for distributed elliptic optimal control problems SIAM J. Control. Optim. 2002 41 5 1321-1349
[23]
Liu WB and Yan NN A posteriori error estimates for optimal problems governed by Stokes equations SIAM J. Numer. Anal. 2003 40 1850-1869
[24]
Hintermöller M and Hoppe RHW Goal-oriented adaptivity in control constrained optimal control of partial differential equations SIAM J. Control. Optim. 2008 47 4 1721-1743
[25]
Kohls K, Rösch A, and Siebert KG A posteriori error analysis of optimal control problems with control constraints SIAM J. Control. Optim. 2014 52 1832-1861
[26]
Gong W and Yan NN Adaptive finite element method for elliptic optimal control problems: convergence and optimality Numer. Math. 2017 135 1121-1170
[27]
Chang YZ, Yang DP, and Zhang ZJ Adaptive finite element approximation for a class of parameter estimation problems Appl. Math. Comput. 2014 231 284-298
[28]
Fuica F and Otárola E A posteriori error estimates for an optimal control problem with a bilinear state equation J. Optim. Theory Appl. 2022 194 543-569
[29]
Kunisch K, Liu WB, Chang YZ, Yan NN, and Li R Adaptive finite element approximation for a class of parameter estimation problems J. Comput. Math. 2010 28 5 645-675
[30]
Otárola E Fractional semilinear optimal control: optimality conditions, convergence, and error analysis SIAM J. Numer. Anal. 2022 60 1-27
[31]
Tröltzsch F Optimale Steuerung Partieller Differentialgleichungen 2005 Wiesbaden Vieweg
[32]
Tröltzsch, F., Sprekels, J.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications. American Mathematical Society, Providence (2010)
[33]
Hinze M A variational discretization concept in control constrained optimization: the linear-quadratic case Comput. Optim. Appl. 2005 30 45-63
[34]
Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: DeVore, R., Kunoth, A. (eds.) Multiscale. Nonlinear and Adaptive Approximation, pp. 409–542. Springer, Berlin (2009)

Index Terms

  1. Adaptive finite element approximation of bilinear optimal control problem with fractional Laplacian
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Calcolo: a quarterly on numerical analysis and theory of computation
    Calcolo: a quarterly on numerical analysis and theory of computation  Volume 61, Issue 4
    Nov 2024
    431 pages

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 16 September 2024
    Accepted: 25 August 2024
    Revision received: 14 August 2024
    Received: 08 October 2023

    Author Tags

    1. Adaptive finite element
    2. Bilinear optimal control
    3. Fractional Laplacian
    4. A posteriori error estimate

    Author Tags

    1. 49J20
    2. 49M25
    3. 65N12
    4. 65N30
    5. 65N50

    Qualifiers

    • Research-article

    Funding Sources

    • the National Natural Science Foundation of China

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 29 Nov 2024

    Other Metrics

    Citations

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media