Nothing Special   »   [go: up one dir, main page]

skip to main content
article

A New Descent Method for Symmetric Non-monotone Variational Inequalities with Application to Eigenvalue Complementarity Problems

Published: 01 June 2017 Publication History

Abstract

In this paper, a modified Josephy---Newton direction is presented for solving the symmetric non-monotone variational inequality. The direction is a suitable descent direction for the regularized gap function. In fact, this new descent direction is obtained by developing the Gauss---Newton idea, a well-known method for solving systems of equations, for non-monotone variational inequalities, and is then combined with the Broyden---Fletcher---Goldfarb---Shanno-type secant update formula. Also, when Armijo-type inexact line search is used, global convergence of the proposed method is established for non-monotone problems under some appropriate assumptions. Moreover, the new algorithm is applied to an equivalent non-monotone variational inequality form of the eigenvalue complementarity problem and some other variational inequalities from the literature. Numerical results from a variety of symmetric and asymmetric eigenvalue complementarity problems and the variational inequalities show a good performance of the proposed algorithm with regard to the test problems.

References

[1]
Nagurney, A.: Variational inequalities. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, 2nd edn, pp. 3989---3994. Springer, New York (2009)
[2]
Signorini, A.: Questioni di elasticiá non linearizzata e semilinearizzata. Rend. Mat. Appl. Ser. 18, 95---139 (1959). (in Italian)
[3]
Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I. Springer, New York (2003)
[4]
Adly, S., Rammal, H.: A new method for solving Pareto eigenvalue complementarity problems. Comput. Optim. Appl. 55, 703---731 (2013)
[5]
Adly, S., Seeger, A.: A nonsmooth algorithm for cone-constrained eigenvalue problems. Comput. Optim. Appl. 49, 299---318 (2011)
[6]
Chen, H.S.: A family of NCP function and a descent method for the nonlinear complementarity problem. Comput. Optim. Appl. 40, 39---404 (2008)
[7]
Judice, J., Faustino, A.: A sequential LCP algorithm for bilevel linear programming. Ann. Oper. Res. 34, 89---106 (1992)
[8]
Júdice, J.J., Sherali, H.D., Ribeiro, I.M., Rosa, S.S.: On the asymmetric eigenvalue complementarity problem. Optim. Methods Softw. 24, 549---568 (2009)
[9]
Pinto da Costa, A., Seeger, A.: Numerical resolution of cone constrained eigenvalue problems. Comput. Appl. Math. 28, 37---61 (2009)
[10]
da Costa, A.P., Seeger, A.: Cone constrained eigenvalue problems: theory and algorithms. Comput. Optim. Appl. 45, 25---57 (2010)
[11]
Seeger, A.: Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions. Linear Algebra Appl. 292, 1---14 (1999)
[12]
Zhou, Y., Gowda, M.S.: On the finiteness of the cone spectrum of certain linear transformations on Euclidean Jordan algebras. Linear Algebra Appl. 431, 772---782 (2009)
[13]
Queiroz, M., Júdice, J., Humes, J.R.C.: The symmetric eigenvalue complementarity problem. Math. Comput. 73, 1849---1863 (2004)
[14]
Júdice, J., Raydan, M., Rosa, S.S., Santos, S.A.: On the solution of the symmetric eigenvalue complementarity problem by the spectral projected gradient algorithm. Numer. Algorithms 47, 391---407 (2008)
[15]
Le Thi, H.A., Moeini, M., Pham Dinh, T., Júdice, J.J.: A DC programming approach for solving the symmetric eigenvalue complementarity problem. Comput. Optim. Appl. 51, 1097---1117 (2012)
[16]
Pinto da Costa, A., Martins, J.A.C., Figueiredo, I.N., Júdice, J.J.: The directional instability problem in systems with frictional contacts. Comput. Methods Appl. Mech. Eng. 193, 357---384 (2004)
[17]
Dirkse, S.P., Ferris, M.C.: The PATH solver: a non-monotone stabilization scheme for mixed complementarity problems. Optim. Methods Softw. 5, 123---156 (1995)
[18]
Munson, T.S.: Algorithms and Environments for Complementarity. Ph.D. Thesis, University of Wisconsin-Madison, Wisconsin (2000)
[19]
Josephy, N.H.: Newton's method for generalized equations. Technical Summary Report no. 1965, Mathematics Research Center, University of Wisconsin, Madison (1979)
[20]
Josephy, N.H.: Quasi-Newton method for generalized equations. Technical Summary Report no. 1966, Mathematics Research Center, University of Wisconsin, Madison ( 1979)
[21]
Robinson, S.M.: Generalized equations. In: Bachem, A., Grotschel, M., Korte, B. (eds.) Mathematical Programming: The State of the Art, pp. 346---367. Springer, Berlin (1982)
[22]
Bonnans, J.F.: Local analysis of Newton-type methods for variational inequalities and nonlinear programming. Appl. Math. Optim. 29, 161---186 (1994)
[23]
Eaves, B.C.: A locally quadratically convergent algorithm for computing stationary points. Technical Report SOL 78-13, Department of Operations Research, Stanford University (1978)
[24]
Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 43---62 (1980)
[25]
Pang, J.S., Chart, D.: Iterative methods for variational and complementarity problems. Math. Program. 24, 284---313 (1982)
[26]
Harker, P.T., Pang, J.S.: Finite dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. 48, 161---220 (1990)
[27]
Marcotte, P., Dussault, J.P.: A note on a globally convergent Newton method for solving monotone variational inequalities. Oper. Res. Lett. 6, 35---42 (1987)
[28]
Marcotte, P.: A new algorithm for solving variational inequalities with application to the traffic assignment problem. Math. Program. 33, 339---351 (1985)
[29]
Taji, K., Fukushima, M., Ibaraki, T.: A globally convergent Newton method for solving strongly monotone variational inequalities. Math. Program. 58, 369---383 (1993)
[30]
Taji, K.: A note on globally convergent Newton method for strongly monotone variational inequalities. J. Oper. Res. Soc. Jpn. 51, 310---316 (2008)
[31]
Peng, J.M., Fukushima, M.: A hybrid Newton method for solving the variational inequality problem via the D-gap function. Math. Program. 86, 367---386 (1999)
[32]
Long, J., Zeng, S.: A projection-filter method for solving nonlinear complementarity problems. Appl. Math. Comput. 216, 300---307 (2010)
[33]
Auslender, A.: Optimisation : Methodes Numeriques. Masson, Paris (1976)
[34]
Fukushima, M.: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 53, 99---110 (1992)
[35]
Bras, C.P., Fukushima, M., Júdice, J.J., Rosa, S.S.: Variational inequality formulation of the asymmetric eigenvalue complementarity problem and its solution by means of gap functions. Pac. J. Optim. 8, 197---215 (2012)
[36]
Li, D., Fukushima, M.: A globally and super linearly convergent Gauss---Newton based BFGS method for symmetric nonlinear equations. SIAM J. Numer. Anal. 37, 152---172 (1999)
[37]
Li, D.H., Fukushima, M.: On the global convergence of the BFGS method for nonconvex unconstrained optimization problems. SIAM J. Optim. 11, 1054---1064 (2001)
[38]
Li, D.H., Fukushima, M.: A modified BFGS method and its global convergence in nonconvex minimization. J. Comput. Appl. Math. 129, 15---35 (2001)
[39]
Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227---244 (1993)
[40]
Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
[41]
Sun, D., Fukushima, M., Qi, L.: A computable generalized Hessian of the D-gap function and Newton-type methods for variational inequality problems. In: Ferris, M.C., Pang, J.-S. (eds.) Complementarity and Variational Problems: State of the Arts, pp. 452---472. SIAM, Philadelphia (1997)
[42]
Byrd, R., Nocedal, J.: A tool for analysis of Quasi---Newton methods with application to unconstrained minimization. SIAM J. Numer. Anal. 26, 727---739 (1989)
[43]
Júdice, J.J., Sherali, H.D., Ribeiro, I.: The eigenvalue complementarity problem. Comput. Optim. Appl. 37, 139---156 (2007)
[44]
Niu, Y.S., Pham Dinh, T., Le Thi, H.A., Júdice, J.J.: Efficient DC programming approaches for the asymmetric eigenvalue complementarity problem. Optim. Methods Softw. 28, 812---829 (2013)
[45]
Kojima, M., Shindo, S.: Extensions of Newton and Quasi---Newton methods to systems of $$ PC^{1} $$PC1 equations. J. Oper. Res. Soc. Jpn. 29, 352---374 (1986)
[46]
Pang, J.-S., Gabriel, S.A.: NE/SQP: a robust algorithm for the nonlinear complementary problem. Math. Program. 60, 295---337 (1993)
[47]
Harker, P.T.: Accelerating the convergence of the diagonalization and projection algorithms for finite-dimensional variational inequalities. Math. Program. 41, 29---59 (1988)
[48]
Marcotte, P.: Application of Khobotov's algorithm to variational inequalities and network equilibrium problems. INFORM 29, 258---271 (1991)
[49]
Dafermos, S.: Traffic equilibrium and variational inequalities. Transp. Sci. 14, 42---54 (1980)
  1. A New Descent Method for Symmetric Non-monotone Variational Inequalities with Application to Eigenvalue Complementarity Problems

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Journal of Optimization Theory and Applications
        Journal of Optimization Theory and Applications  Volume 173, Issue 3
        June 2017
        344 pages

        Publisher

        Plenum Press

        United States

        Publication History

        Published: 01 June 2017

        Author Tags

        1. 49M15
        2. 65F15
        3. 65F18
        4. 90C33
        5. 90C53
        6. BFGS secant update formula
        7. Complementarity problem
        8. Eigenvalue complementarity problem
        9. Gauss---Newton method
        10. Josephy---Newton method
        11. Variational inequality

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 29 Nov 2024

        Other Metrics

        Citations

        View Options

        View options

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media