Nothing Special   »   [go: up one dir, main page]

skip to main content
article

High Order Multi-dimensional Characteristics Tracing for the Incompressible Euler Equation and the Guiding-Center Vlasov Equation

Published: 01 October 2018 Publication History

Abstract

In this paper, we propose a high order characteristics tracing scheme for the two-dimensional nonlinear incompressible Euler system in vorticity stream function formulation and the guiding center Vlasov model. Such a scheme is incorporated into a semi-Lagrangian finite difference WENO framework for simulating the aforementioned model equations. This is an extension of our earlier work on high order characteristics tracing scheme for the 1D nonlinear Vlasov---Poisson system (Qiu and Russo in J Sci Comput 71:414---434, 2017). The effectiveness of the proposed scheme is demonstrated numerically by an extensive set of test cases.

References

[1]
Bonaventura, L., Ferretti, R., Rocchi, L.: A fully semi-Lagrangian discretization for the 2D incompressible Navier---Stokes equations in the vorticity-streamfunction formulation. Appl. Math. Comput. 323, 132---144 (2018)
[2]
Cai, X., Guo, W., Qiu, J.-M.: A high order semi-Lagrangian discontinuous Galerkin method for Vlasov-Poisson simulations without operator splitting. J. Comput. Phys. 354, 529---551 (2018)
[3]
Celledoni, E., Kometa, B.K., Verdier, O.: High order semi-Lagrangian methods for the incompressible Navier---Stokes equations. J. Sci. Comput. 66, 91---115 (2016)
[4]
Chorin, A.J.: Numerical study of slightly viscous flow. J. Fluid Mech. 57, 785---796 (1973)
[5]
Cockburn, B., Johnson, C., Shu, C.-W., Tadmor, E.: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Springer, New York (1998)
[6]
Cottet, G.-H., Koumoutsakos, P.D.: Vortex Methods: Theory and Practice. Cambridge University Press, Cambridge (2000)
[7]
Crouseilles, N., Mehrenberger, M., Sonnendrücker, E.: Conservative semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys. 229, 1927---1953 (2010)
[8]
Falcone, M., Ferretti, R.: Semi-Lagrangian Approximation Schemes for Linear and Hamilton---Jacobi Equations. SIAM, New York (2013)
[9]
Ghizzo, A., Bertrand, P., Shoucri, M., Fijalkow, E., Feix, M.: An Eulerian code for the study of the drift-kinetic Vlasov equation. J. Comput. Phys. 108, 105---121 (1993)
[10]
Krasny, R.: Desingularization of periodic vortex sheet roll-up. J. Comput. Phys. 65, 292---313 (1986)
[11]
Leonard, A.: Vortex methods for flow simulation. J. Comput. Phys. 37, 289---335 (1980)
[12]
Liu, J.-G., Shu, C.-W.: A high-order discontinuous Galerkin method for 2D incompressible flows. J. Comput. Phys. 160, 577---596 (2000)
[13]
Liu, J.-G., Wang, C.: High order finite difference methods for unsteady incompressible flows in multi-connected domains. Comput. Fluids 33, 223---255 (2004)
[14]
Olshanskii, M.A., Heister, T., Rebholz, L.G., Galvin, K.J.: Natural vorticity boundary conditions on solid walls. Comput. Methods Appl. Mech. Eng. 297, 18---37 (2015)
[15]
Qiu, J.-M., Russo, G.: A high order multi-dimensional characteristic tracing strategy for the Vlasov---Poisson system. J. Sci. Comput. 71, 414---434 (2017)
[16]
Qiu, J.-M., Shu, C.-W.: Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow. J. Comput. Phys. 230, 863---889 (2011)
[17]
Rossi, L.F.: Merging computational elements in vortex simulations. SIAM J. Sci. Comput. 18, 1014---1027 (1997)
[18]
Russo, G.: A deterministic vortex method for the Navier---Stokes equations. J. Comput. Phys. 108, 84---94 (1993)
[19]
Russo, G., Strain, J.A.: Fast triangulated vortex methods for the 2D Euler equations. J. Comput. Phys. 111, 291---323 (1994)
[20]
Shoucri, M.M.: A two-level implicit scheme for the numerical solution of the linearized vorticity equation. Int. J. Numer. Meth. Eng. 17, 1525---1538 (1981)
[21]
Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149, 201---220 (1999)
[22]
Souli, M.: Vorticity boundary conditions for Navier---Stokes equations. Comput. Methods Appl. Mech. Eng. 134, 311---323 (1996)
[23]
Weinan, E., Liu, J.-G.: Vorticity boundary condition and related issues for finite difference schemes. J. Comput. Phys. 124, 368---382 (1996)
[24]
Weinan, E., Liu, J.-G.: Essentially compact schemes for unsteady viscous incompressible flows. J. Comput. Phys. 126, 122---138 (1996)
[25]
Xiong, T., Russo, G., Qiu, J.-M.: Conservative multi-dimensional semi-Lagrangian finite difference scheme: stability and applications to the kinetic and fluid simulations. arXiv:1607.07409 (2016)
[26]
Xiu, D., Karniadakis, G.E.: A semi-Lagrangian high-order method for Navier---Stokes equations. J. Comput. Phys. 172, 658---684 (2001)
[27]
Zhu, H., Qiu, J., Qiu, J.-M.: An h-adaptive rkdg method for the two-dimensional incompressible euler equations and the guiding center Vlasov model. J. Sci. Comput. 73, 1316---1337 (2017)

Cited By

View all
  • (2022)On the Construction of Conservative Semi-Lagrangian IMEX Advection Schemes for Multiscale Time Dependent PDEsJournal of Scientific Computing10.1007/s10915-022-01768-090:3Online publication date: 11-Feb-2022
  • (2019)Solving hyperbolic-elliptic problems on singular mapped disk-like domains with the method of characteristics and spline finite elementsJournal of Computational Physics10.1016/j.jcp.2019.108889398:COnline publication date: 1-Dec-2019
  • (2019)Conservative Multi-dimensional Semi-Lagrangian Finite Difference SchemeJournal of Scientific Computing10.1007/s10915-018-0892-679:2(1241-1270)Online publication date: 17-May-2019
  • Show More Cited By
  1. High Order Multi-dimensional Characteristics Tracing for the Incompressible Euler Equation and the Guiding-Center Vlasov Equation

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Journal of Scientific Computing
        Journal of Scientific Computing  Volume 77, Issue 1
        October 2018
        688 pages

        Publisher

        Plenum Press

        United States

        Publication History

        Published: 01 October 2018

        Author Tags

        1. Characteristics tracing
        2. Finite difference WENO
        3. Guiding-center Vlasov equation
        4. Incompressible Euler equation
        5. Semi-Lagrangian
        6. Vorticity stream function formulation

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 01 Jan 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2022)On the Construction of Conservative Semi-Lagrangian IMEX Advection Schemes for Multiscale Time Dependent PDEsJournal of Scientific Computing10.1007/s10915-022-01768-090:3Online publication date: 11-Feb-2022
        • (2019)Solving hyperbolic-elliptic problems on singular mapped disk-like domains with the method of characteristics and spline finite elementsJournal of Computational Physics10.1016/j.jcp.2019.108889398:COnline publication date: 1-Dec-2019
        • (2019)Conservative Multi-dimensional Semi-Lagrangian Finite Difference SchemeJournal of Scientific Computing10.1007/s10915-018-0892-679:2(1241-1270)Online publication date: 17-May-2019
        • (2019)A High Order Semi-Lagrangian Discontinuous Galerkin Method for the Two-Dimensional Incompressible Euler Equations and the Guiding Center Vlasov Model Without Operator SplittingJournal of Scientific Computing10.1007/s10915-018-0889-179:2(1111-1134)Online publication date: 17-May-2019

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media