Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Error Analysis of Mixed Finite Element Methods for Nonlinear Parabolic Equations

Published: 01 December 2018 Publication History

Abstract

In this paper, we prove a discrete embedding inequality for the Raviart---Thomas mixed finite element methods for second order elliptic equations, which is analogous to the Sobolev embedding inequality in the continuous setting. Then, by using the proved discrete embedding inequality, we provide an optimal error estimate for linearized mixed finite element methods for nonlinear parabolic equations. Several numerical examples are provided to confirm the theoretical analysis.

References

[1]
Akrivis, G., Li, B., Lubich, C.: Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations. Math. Comp. 86, 1527---1552 (2017)
[2]
Arbogast, T., Estep, D., Sheehan, B., Tavener, S.: A posteriori error estimates for mixed finite element and finite volume methods for parabolic problems coupled through a boundary. SIAM/ASA J. Uncertain. Quantif. 3, 169---198 (2015)
[3]
Arbogast, T., Wheeler, M.: A characteristics-mixed finite element method for advection-dominated transport problems. SIAM J. Numer. Anal. 32, 404---424 (1995)
[4]
Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Heidelberg (2013)
[5]
Brezzi, F., Marini, L., Micheletti, S., Pietra, P., Sacco, R., Wang, S.: Discretization of semiconductor device problems (I), Handbook of Numerical Analysis XIII, special Volume on Numerical Methods in Electromagnetics, pp. 317---442. North-Holland, Amsterdam (2005)
[6]
Buffa, A., Ortner, C.: Compact embeddings of broken Sobolev spaces and applications. IMA J. Numer. Anal. 29, 827---855 (2009)
[7]
Chen, L., Chen, Y.: Two-grid method for nonlinear reaction---diffusion equations by mixed finite element methods. J. Sci. Comput. 49, 383---401 (2011)
[8]
Chen, Y., Liu, H., Liu, S.: Analysis of two-grid methods for reaction---diffusion equations by expanded mixed finite element methods. Int. J. Numer. Meth. Eng. 69, 408---422 (2007)
[9]
Chen, Y., Huang, Y., Yu, D.: A two-grid method for expanded mixed finite-element solution of semilinear reaction---diffusion equations. Int. J. Numer. Meth. Eng. 57, 193---209 (2003)
[10]
Di Pietro, D., Ern, A.: Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier---Stokes equations. Math. Comput. 79, 1303---1330 (2010)
[11]
Dawson, C., Sun, S., Wheeler, M.: Compatible algorithm for coupled flow and transport. Comput. Methods Appl. Mech. Eng. 193, 2562---2580 (2004)
[12]
Egger, H., Schoberl, J.: A hybrid mixed discontinuous Galerkin finite-element method for convection---diffusion problems. IMA J. Numer. Anal. 30, 1206---1234 (2010)
[13]
Ern, A., Guermond, J.: Theory and Practice of Finite Elements, Applied Mathematical Sciences, vol. 159. Springer, New York (2004)
[14]
Ewing, R., Wheeler, M.: Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 17, 351---365 (1980)
[15]
Feng, X., He, Y., Liu, C.: Analysis of finite element approximations of a phase field model for two phase fluids. Math. Comp. 76, 539---571 (2007)
[16]
Feng, X., Wu, H.: A posteriori error estimates and an adaptive finite element method for the Allen---Cahn equation and the mean curvature flow. J. Sci. Comput. 24, 121---146 (2005)
[17]
Gadau, S., Jungel, A.: A three-dimensional mixed finite-element approximation of the semiconductor energy-transport equations. SIAM J. Sci. Comput. 31, 1120---1140 (2008)
[18]
Gao, H., Li, B., Sun, W.: Optimal error estimates of linearized Crank---Nicolson Galerkin FEMs for the time-dependent Ginzburg---Landau equations in superconductivity. SIAM J. Numer. Anal. 52, 1183---1202 (2014)
[19]
Gao, H., Li, B., Sun, W.: Stability and convergence of fully discrete Galerkin FEMs for the nonlinear thermistor equations in a nonconvex polygon. Numer. Math. 136, 383---409 (2017)
[20]
Garcia, M.: Improved error estimates for mixed finite element approximations for nonlinear parabolic equations: the continuously-time case. Numer. Methods Partial Differ. Equ. 10, 129---149 (1994)
[21]
Garcia, M.: Improved error estimates for mixed finite element approximations for nonlinear parabolic equations: the discrete-time case. Numer. Methods Partial Differ. Equ. 10, 149---169 (1994)
[22]
Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier---Stokes problem IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353---384 (1990)
[23]
Holst, S., Jungel, A., Pietra, P.: An adaptive mixed scheme for energy-transport simulations of field-effect transistors. SIAM J. Sci. Comput. 25, 1698---1716 (2004)
[24]
Hou, Y., Li, B., Sun, W.: Error estimates of splitting Galerkin methods for heat and sweat transport in textile materials. SIAM J. Numer. Anal. 51, 88---111 (2013)
[25]
Hua, J., Lin, P., Liu, C., Wang, Q.: Energy law preserving $$C^0$$C0 finite element schemes for phase field models in two-phase flow computations. J. Comput. Phys. 230, 7115---7131 (2011)
[26]
Johnson, C., Thomee, V.: Error estimates for some mixed finite element methods for parabolic type problems. RAIRO Anal. Numer. 15, 41---78 (1981)
[27]
Kim, D., Park, E., Seo, B.: Two-scale product approximation for semilinear parabolic problems in mixed methods. J. Korean Math. Soc. 51, 267---288 (2014)
[28]
Logg, A., Mardal, K., Wells, G.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012)
[29]
Li, B.: Analyticity, maximal regularity and maximum-norm stability of semi-discrete finite element solutions of parabolic equations in nonconvex polyhedra. Math. Comp. (2017).
[30]
Li, B., Gao, H., Sun, W.: Unconditionally optimal error estimates of a Crank---Nicolson Galerkin method for the nonlinear thermistor equations. SIAM J. Numer. Anal. 52, 933---954 (2014)
[31]
Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622---633 (2013)
[32]
Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959---1977 (2013)
[33]
Li, B., Sun, W.: Regularity of the diffusion---dispersion tensor and error analysis of FEMs for a porous media flow. SIAM J. Numer. Anal. 53, 1418---1437 (2015)
[34]
Nedelec, J.: Mixed finite elements in $$\mathbf{R}^3$$R3. Numer. Math. 35, 315---341 (1980)
[35]
Nirenberg, L.: An extended interpolation inequality. Ann. Scuola Norm. Sup. Pisa 20(4), 733---737 (1966)
[36]
Raviart, P.-A., Thomas, J.-M.: A mixed finite element method for second order elliptic problems. In: Mathematical Aspects of the Finite Element Method. Lecture Notes in Math, vol. 606. Springer, New York (1977)
[37]
Wu, L., Allen, M.: A two-grid method for mixed finite-element solution of reaction---diffusion equations. Numer. Methods Partial Differ. Equ. 15, 317---332 (1999)

Cited By

View all
  • (2019)The High-Order Mixed Mimetic Finite Difference Method for Time-Dependent Diffusion ProblemsJournal of Scientific Computing10.1007/s10915-019-01002-480:3(1805-1830)Online publication date: 1-Sep-2019
  1. Error Analysis of Mixed Finite Element Methods for Nonlinear Parabolic Equations

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Journal of Scientific Computing
      Journal of Scientific Computing  Volume 77, Issue 3
      December 2018
      678 pages

      Publisher

      Plenum Press

      United States

      Publication History

      Published: 01 December 2018

      Author Tags

      1. 35Q30
      2. 65M60
      3. 65N30
      4. Discrete Sobolev embedding inequality
      5. Finite element method
      6. Nonlinear parabolic equations
      7. Optimal error analysis
      8. Unconditional convergence

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 19 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2019)The High-Order Mixed Mimetic Finite Difference Method for Time-Dependent Diffusion ProblemsJournal of Scientific Computing10.1007/s10915-019-01002-480:3(1805-1830)Online publication date: 1-Sep-2019

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media