Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Discrimination of Alzheimer's Disease using longitudinal information

Published: 01 July 2017 Publication History

Abstract

Alzheimer's Disease (AD) is a neurological disorder that leads to a loss of cognitive functioning, affecting older people as well as their families. Although a few treatments are available to slow down the progress of the disease, they are limited in effectiveness and should start at an early stage of the disease. Since an early diagnosis of AD is crucial, to maximize treatment effectiveness and prepare the families for the worsening of symptoms, researchers are studying biomarkers and Computer-aided diagnosis (CAD) systems. Hence, this manuscript proposes a new methodology to obtain an efficient CAD system by relying on [$$^{18}$$18F]-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) scans, while taking into account the longitudinal information of a subject. The CAD system tries to identify regions of interest by simultaneously segmenting all the FDG-PET scans acquired over time for each subject and combining the segmentation result to find the most coherent information for all the subjects. Experimental results show that the proposed CAD system outperforms a state-of-the-art approach, either when only relying on baseline scans or in the follow-up classification, achieving, for instance, more than 82.0% accuracy in the discrimination between AD and Mild Cognitive Impairment (MCI). Finally, in a multi-class classification task, the proposed CAD system attains 59.0% accuracy at baseline and goes up to 69.4% in the follow-up.

Index Terms

  1. Discrimination of Alzheimer's Disease using longitudinal information
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Data Mining and Knowledge Discovery
    Data Mining and Knowledge Discovery  Volume 31, Issue 4
    Jul 2017
    248 pages

    Publisher

    Kluwer Academic Publishers

    United States

    Publication History

    Published: 01 July 2017

    Author Tags

    1. Alzheimer's disease
    2. CAD system
    3. FDG-PET scans
    4. Regions of interest
    5. Segmentation of temporal images

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 14 Nov 2024

    Other Metrics

    Citations

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media