Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Optical flow for video super-resolution: a survey

Published: 01 December 2022 Publication History

Abstract

Video super-resolution is currently one of the most active research topics in computer vision as it plays an important role in many visual applications. Generally, video super-resolution contains a significant component, i.e., motion compensation, which is used to estimate the displacement between successive video frames for temporal alignment. Optical flow, which can supply dense and sub-pixel motion between consecutive frames, is among the most common ways for this task. To obtain a good understanding of the effect that optical flow acts in video super-resolution, in this work, we conduct a comprehensive review on this subject for the first time. This investigation covers the following major topics: the function of super-resolution (i.e., why we require super-resolution); the concept of video super-resolution (i.e., what is video super-resolution); the description of evaluation metrics (i.e., how (video) super-resolution performs); the introduction of optical flow based video super-resolution; the investigation of using optical flow to capture temporal dependency for video super-resolution. Prominently, we give an in-depth study of the deep learning based video super-resolution method, where some representative algorithms are analyzed and compared. Additionally, we highlight some promising research directions and open issues that should be further addressed.

References

[1]
Anwar S, Khan S, and Barnes N A deep journey into super-resolution: a survey ACM Comput Surv 2020 53 3 1-34
[2]
Babacan SD, Molina R, and Katsaggelos AK Variational Bayesian super resolution IEEE Trans Image Process 2011 20 4 984-999
[3]
Baker S and Kanade T Super-resolution optical flow 1999 Pittsburgh Carnegie Mellon University 36-99
[4]
Baker S, Schar D, Lewis J, Roth S, Black M, and Szeliski R A database and evaluation methodology for optical flow Int J Comput Vision 2011 92 1 1-31
[5]
Bao W, Lai W, Zhang X, Gao Z, and Yang M MEMC-Net: motion estimation and motion compensation driven neural network for video interpolation and enhancement IEEE Trans Pattern Anal Mach Intell 2019
[6]
Bian W, Ding S, and Xue Y Fingerprint image super resolution using sparse representation with ridge pattern prior by classification coupled dictionaries IET Biometr 2017 6 5 342-350
[7]
Blau Y, Mechrez R, Timofte R, Michaeli T, Zelnik-Manor L (2018) The 2018 pirm challenge on perceptual image super-resolution. In: Proceedings ECCVW, pp 334–355
[8]
Borsoi RA, Costa GH, and Bermudez JCM A new adaptive video super-resolution algorithm with improved robustness to innovations IEEE Trans Image Process 2019 28 2 673-686
[9]
Caballero J, Ledig C, Aitken A, Acosta A, Totz J, Wang Z, Shi W (2017) Real-time video super-resolution with spatio-temporal networks and motion compensation. In: Proceedings CVPR, pp 78–4787
[10]
Cai D, Chen K, Qian Y, and Kamarainen J Convolutional low-resolution fine-grained classification Pattern Recogn Lett 2019 119 166-171
[11]
Chan K, Wang X, Yu K, Dong C, Loy C (2021) BasicVSR: the search for essential components in video super-resolution and beyond. In: Proceedings CVPR, pp 4947–4956
[12]
Chen Y, Tai Y, Liu X, Shen C, Yang J (2018) FSRNet: end-to-end learning face super-resolution with facial priors. In: Proceedings CVPR, pp 2492–2501
[13]
Choi K, Kim C, Kang M, and Ra J Resolution improvement of infrared images using visible image information IEEE Trans Image Process 2011 18 10 611-614
[14]
Cruz C, Mehta R, Katkovnik V, and Egiazarian KO Single image super-resolution based on Wiener filter in similarity domain IEEE Trans Image Process 2018 27 3 1376-1389
[15]
Dai Q, Yoo S, Kappeler A, and Katsaggelos AK Sparse representation-based multiple frame video super-resolution IEEE Trans Image Process 2017 26 2 765-781
[16]
Daithankar MV, Ruikar SD (2020) Video super resolution: a review. In: Proceedings first international conference on data science, machine learning and applications, vol 601, pp 488–495
[17]
Dong C, Chen CL, He K, Tang X (2014) Learning a deep convolutional network for image super-resolution. In: Proceedings ECCV, pp 184–199
[18]
Dosovitskiy A, Fischer P, Ilg E, Husser P, Hazirbas C, Golkov V, Smagt P, Cremers D, Brox T (2015) FlowNet: learning optical flow with convolutional networks. In: Proceedings ICCV, pp 2758–2766
[19]
Drulea M, Nedevschi S (2011) Total variation regularization of local global optical flow. In: Proceedings ITSC, pp 318–323
[20]
Eekeren AWM, Schutte K, and Vliet LJ Multiframe super-resolution reconstruction of small moving objects IEEE Trans Image Process 2010 19 11 2901-2912
[21]
Farsiu S, Robinson MD, Elad M, and Milanfar P Fast and robust multiframe super resolution IEEE Trans Image Process 2004 13 10 1327-1344
[22]
Fookes C, Lin F, Chandran V, Sridharan S (2004) Super-Resolved face images using robust optical flow. In: IEEE workshop on the internet, telecommunications and signal processing, pp 391–396
[23]
Girshick R, Donahue J, Darrell T, and Malik J Region-based convolutional networks for accurate object detection and segmentation IEEE Trans Pattern Anal Mach Intell 2016 38 1 142-158
[24]
Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings international conference on artificial intelligence and statistics, pp 249–256
[25]
Han T, Kim D, Lee S, and Song B Resolution improvement of infrared images using visible image information J Vis Commun Image Represent 2018 51 191-200
[26]
Haris M, Shakhnarovich G, Ukita N (2018) Deep back-projection networks for super-resolution. In: Proceedings CVPR, pp 1664–1673
[27]
Haris M, Shakhnarovich G, Ukita N (2019) Recurrent back-projection network for video super-resolution. In: Proceedings CVPR, pp 3897–3906
[28]
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings CVPR, pp 770–778
[29]
Hong C, Yu J, Wan J, Tao D, and Wang M Multimodal deep autoencoder for human pose recovery IEEE Trans Image Process 2015 24 12 5659-5670
[30]
Hore A, Ziou D (2010) Image quality metrics: PSNR vs. SSIM. In: Proceedings international conference on pattern recognition, pp 2358-2369
[31]
Hou L, Yu C, Samaras D (2016) Squared Earth mover’s distance-based loss for training deep neural networks, pp 1–9. arXiv:1611.05916
[32]
Huang J, Ma L, Tan T, and Wang Y Learning based resolution enhancement of iris images Proc BMVC 2003 1 1-10
[33]
Huang Y, Wang W, Wang L (2015) Bidirectional recurrent convolutional networks for multi-frame super-resolution. In: Proceedings NIPS, pp 235–243
[34]
Huang Y, Shao L, Frangi A (2017) Simultaneous super-resolution and cross-modality synthesis of 3D medical images using weakly-supervised joint convolutional sparse coding. In: Proceedings CVPR, pp 6070–6079
[35]
Huang Y, Wang W, and Wang L Video super-resolution via bidirectional recurrent convolutional networks IEEE Trans Pattern Anal Mach Intell 2018 40 4 1015-1028
[36]
Huang Y, Lu Z, Shao Z, Ran M, Zhou J, Fang L, and Zhang Y Simultaneous denoising and super-resolution of optical coherence tomography images based on generative adversarial network Opt Express 2019 27 9 12289-12307
[37]
Ilg E, Mayer N, Saikia T, Keuper M, Dosovitskiy A, Brox T (2017) Flownet 2.0: evolution of optical flow estimation with deep networks. In: Proceedings CVPR, pp 2462–2470
[38]
Isobe T, Li S, Jia X, Yuan S, Slabaugh G, Xu C, Li Y, Wang S, Tian Q (2020) Video super-resolution with temporal group attention. In: Proceedings CVPR, pp 8008–8017
[39]
Jing X, Zhu X, Wu F, Hu R, You X, Wang Y, Feng H, and Yang J On Bayesian adaptive video super resolution IEEE Trans Image Process 2017 26 3 1363-1378
[40]
Jo Y, Oh S, Kang J, Kim S (2018) Deep video super-resolution network using dynamic upsampling filters without explicit motion compensation. In: Proceedings CVPR, pp 3224–3232
[41]
Kalarot R, Porikli F (2019) MultiBoot VSR: multistage multi-reference bootstrapping for video superresolution. In: Proceedings CVPRW, pp 2060–2069
[42]
Kappeler A, Yoo S, Dai Q, and Katsaggelos A Video super-resolution with convolutional neural networks IEEE Trans Comput Imaging 2016 2 2 109-122
[43]
Keller S, Lauze F, and Nielsen M Video super-resolution using simultaneous motion and intensity calculations IEEE Trans Image Process 2011 20 7 1870-1884
[44]
Khrulkov V, Babenko A (2021) Neural side-by-side: predicting human preferences for no-reference super-resolution evaluation. In: Proceedings CVPR, pp 4988–4997
[45]
Kim K and Kwon Y Single-image super-resolution using sparse regression and natural image prior IEEE Trans Pattern Anal Mach Intell 2010 32 6 1127-1133
[46]
Kim J, Lee S (2017) Deep learning of human visual sensitivity in image quality assessment framework. In: Proceedings CVPR, pp 1969–1977
[47]
Kim T, Sajjadi M, Hirsch M, Scholkopf B (2018) Spatio-temporal transformer network for video restoration. In: Proceedings ECCV, pp 111–127
[48]
Ledig C, Theis L, Huszar F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z, Shi W (2017) Photorealistic single image super-resolution using a generative adversarial network. In: Proceedings CVPR, pp 4681–4690
[49]
Lei S, Shi Z, and Zou Z Coupled adversarial training for remote sensing image super-resolution IEEE Trans Geosci Remote Sens 2020 58 5 3633-3643
[50]
Li X, Hu Y, Gao X, Tao D, and Ning B A multi-frame image super-resolution method Signal Process 2010 90 405-414
[51]
Li K, Zhu Y, Yang J, and Jiang J Video super-resolution using an adaptive superpixel-guided auto-regressive model Pattern Recogn 2016 51 59-71
[52]
Li D, Liu Y, and Wang Z Video super-resolution using non-simultaneous fully recurrent convolutional network IEEE Trans Image Process 2019 28 3 1342-1355
[53]
Li F, Bai H, and Zhao Y Learning a deep dual attention network for video super-resolution IEEE Trans Image Process 2020 29 4474-4488
[54]
Liao R, Tao X, Li R, Ma Z, Jia J (2015) Video super-resolution via deep draft-ensemble learning. In: Proceedings ICCV, pp 531–539
[55]
Lim B, Son S, Kim H, Nah S, Lee KM (2017) Enhanced deep residual networks for single image super-resolution. In: Proceedings CVPRW, pp 1132–1140
[56]
Lin K, Wang G (2018) Hallucinated-IQA: no-reference image quality assessment via adversarial learning. In: Proceedings CVPR, pp 732–741
[57]
Lin F, Fookes C, Chandran V, Sridharan S (2005) Investigation into optical flow super-resolution for surveillance applications. In: Proceedings APRS workshop on digital image computing, pp 73–78
[58]
Liu C and Sun D On Bayesian adaptive video super resolution IEEE Trans Pattern Anal Mach Intell 2014 36 2 346-360
[59]
Liu D, Wang Z, Fan Y, Liu X, Wang Z, Chang S, Huang T (2017) Robust video super-resolution with learned temporal dynamics. In: Proceedings ICCV, pp 2507–2515
[60]
Liu D, Wang Z, Fan Y, Liu X, Wang Z, Chang S, Wang X, and Huang T Learning temporal dynamics for video super-resolution: a deep learning approach IEEE Trans Image Process 2018 27 7 3432-3445
[61]
Liu H, Ruan Z, Zhao P, Shang F, Yang L, Liu Y (2020) Video super resolution based on deep learning: a comprehensive survey. arXiv:2007.12928
[62]
Lucas A, Lopez-Tapia S, Molina R, and Katsaggelos AK Generative adversarial networks and perceptual losses for video super-resolution IEEE Trans Image Process 2019 28 7 3312-3327
[63]
Ma Z, Liao R, Tao X, Xu L, Jia J, Wu E (2015) Handling motion blur in multi-frame super-resolution. In: Proceedings CVPR, pp 5224–5232
[64]
Ma C, Yang C, Yang X, and Yang M Learning a no-reference quality metric for single-image super-resolution Comput Vis Image Underst 2017 158 1-16
[65]
Ma C, Jiang Z, Rao Y, Lu J, Zhou J (2020) Deep face super-resolution with iterative collaboration between attentive recovery and landmark estimation. In: Proceedings CVPR, pp 5569–5578
[66]
Meur OL, Ebdelli M, and Guillemot C Hierarchical super-resolution-based inpainting IEEE Trans Image Process 2013 22 10 3779-3790
[67]
Mitzel D, Pock T, Schoenemann T, Cremers D (2009) Video super resolution using duality based TV-L1 optical flow. In: Proceedings DAGM 2009: pattern recognition, pp 432–441
[68]
Mudenagudi U, Banerjee S, and Kalra PK Space-time super-resolution using graph-cut optimization IEEE Trans Pattern Anal Mach Intell 2011 33 5 995-1008
[69]
Mudunuri S and Biswas S Low resolution face recognition across variations in pose and illumination IEEE Trans Pattern Anal Mach Intell 2016 38 5 1034-1040
[70]
Na B, Fox GC (2017) Object detection by a super-resolution method and a convolutional neural networks. In: Proceedings IEEE international conference on big data, pp 2263–2269
[71]
Nasrollahi K and Moeslund TB Super-resolution: a comprehensive survey Mach Vis Appl 2014 25 1423-1468
[72]
Nguyen K, Fookes C, Sridharan S, Tistarelli M, and Nixon M Super-resolution for biometrics: a comprehensive survey Pattern Recogn 2018 78 23-42
[73]
Noor DF, Li Y, Li Z, Bhattacharyya S, and York G Multi-scale gradient image super-resolution for preserving SIFT key points in low-resolution images Signal Process Image Commun 2019 78 236-245
[74]
Pan J, Bai H, Dong J, Zhang J, Tang J (2021) Deep blind video super-resolution. In: Proceedings ICCV, pp 4811–4820
[75]
Papenberg N, Bruhn A, Brox T, Didas S, and Weickert J Highly accurate optic flow computation with theoretically justified warping Int J Comput Vis 2006 67 2 141-158
[76]
Park S, Park M, and Kang M Super-resolution image reconstruction: a technical overview IEEE Signal Process Mag 2003 20 3 21-35
[77]
Peleg S, Keren D, and Schweitzer L Improving image resolution using subpixel motion Pattern Recogn Lett 1987 5 3 223-226
[78]
Picku LC (2007) Machine learning in multi-frame image super-resolution. Ph.D thesis, University of Oxford, Britain
[79]
Prashnani E, Cai H, Mostofi Y, Sen P (2018) PieAPP: perceptual image-error assessment through pairwise preference. In: Proceedings CVPR, pp 1808–1817
[80]
Ranjan A, Black M (2017) Optical flow estimation using a spatial pyramid network. In: Proceedings CVPR, pp 4161–4170
[81]
Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Proceedings MICCAI, pp 234–241
[82]
Ryoo MS, Rothrock B, Fleming C, Yang HJ (2017) Privacy-preserving human activity recognition from extreme low resolution. In: Proceedings AAAI, pp 4255–4262
[83]
Sajjadi M, Scholkopf B, Hirsch M (2017) Enhancenet: single image super-resolution through automated texture synthesis. In: Proceedings ICCV, pp 4491–4500
[84]
Sajjadi M, Vemulapalli R, Brown M (2018) Frame-recurrent video super-resolution. In: Proceedings CVPR, pp 6626–6634
[85]
Schoenemann T and Cremers D A coding-cost framework for super-resolution motion layer decomposition IEEE Trans Image Process 2012 21 3 1097-1110
[86]
Shen CT, Liu HH, Yang MH, Hung YP, and Pei SC Viewing-distance aware super-resolution for high-definition display IEEE Trans Image Process 2015 24 1 403-418
[87]
Shi W, Caballero J, Huszar F, Totz J, Aitken AP, Bishop R, Rueckert D, Wang Z (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings CVPR, pp 1874–1883
[88]
Singh A and Singh J Survey on single image based super-resolution-implementation challenges and solutions Multimed Tools Appl 2020 79 3 1641-1672
[89]
Su H, Wu Y, and Zhou J Super-resolution without dense flow IEEE Trans Image Process 2012 21 4 1782-999
[90]
Sun K, Xiao B, Liu D, Wang J (2019) Deep high-resolution representation learning for human pose estimation. In: Proceedings CVPR, pp 5693–5703
[91]
Sun D, Roth S, Black M (2010) Secrets of optical flow estimation and their principles. In: Proceedings CVPR, pp 2432–2439
[92]
Talebi H and Milanfar P NIMA: neural image assessment IEEE Trans Image Process 2018 27 8 3998-4011
[93]
Tang L, Sun K, Liu L, Wang G, and Liu Y A reduced-reference quality assessment metric for super-resolution reconstructed images with information gain and texture similarity Signal Process Image Commun 2019 79 32-39
[94]
Tan W, Yan B, Bare B (2018) Feature super-resolution: make machine see more clearly. In: Proceedings CVPR, pp 3994–4002
[95]
Tao X, Gao H, Liao R, Wang J, Jia J (2017) Detail-revealing deep video super-resolution. In: Proceedings ICCV, pp 4472–4480
[96]
Tatem AJ, Lewis HG, Atkinson PM, and Nixon MS Super-resolution target identification from remotely sensed images using a Hopfield neural network IEEE Trans Geosci Remote Sens 2001 39 4 781-796
[97]
Thapa D, Raahemifar K, Bobier W, and Lakshminarayanan V A performance comparison among different super-resolution techniques Comput Electr Eng 2016 54 313-329
[98]
Timofte R, Gu S, Wu J, Van Gool L et al (2018) Ntire 2018 challenge on single image super-resolution: methods and results. In: Proceedings CVPRW, pp 965–976
[99]
Tsai R, Huang TS (1984) Multiframe image restoration and registration. In: Advances in computer vision and image processing. pp 317–339
[100]
Tu Z, Aa Nico, Gemeren C, and Veltkamp R A combined post-filtering method to improve accuracy of variational optical flow estimation Pattern Recogn 2014 47 5 1926-1940
[101]
Tu Z, Xie W, Zhang D, Poppe R, Veltkamp R, Li B, and Yuan J A survey of variational and CNN-based optical flow techniques Signal Process Image Commun 2019 72 9-24
[102]
Wang Z, Bovik AC, Sheikh HR, and Simoncelli EP Image quality assessment: from error visibility to structural similarity IEEE Trans Image Process 2004 13 4 600-612
[103]
Wang Z, Yi P, Jiang K, Jiang J, Han Z, Lu T, and Ma J Multi-memory convolutional neural network for video super-resolution IEEE Trans Image Process 2019 28 5 2530-2544
[104]
Wang L, Li D, Zhu Y, Tian L, Shan Y (2020a) Dual super-resolution learning for semantic segmentation. In: Proceedings CVPR, pp 3774–3783
[105]
Wang L, Guo Y, Liu L, Lin Z, Deng X, and An W Deep video super-resolution using HR optical flow estimation IEEE Trans Image Process 2020 29 4323-4336
[106]
Wang Z, Chen J, and Hoi S Deep learning for image super-resolution: a survey IEEE Trans Pattern Anal Mach Intell 2021 43 10 3365-3387
[107]
Wang W, Zhang H, Yuan Z, Wang C (2021b) Unsupervised real-world super-resolution: a domain adaptation perspective. In: Proceedings ICCV, pp 4318–4327
[108]
Xiang X, Tian Y, Zhang Y, Fu Y, Allebach J, Xu C (2020) Zooming Slow-Mo: fast and accurate one-stage space-time video super-resolution. In: Proceedings CVPR, pp 3370–3379
[109]
Xiong Z, Sun X, and Wu F Robust web image/video super-resolution IEEE Trans Image Process 2010 19 8 2017-2028
[110]
Xue T, Chen B, Wu J, Wei D, and Freeman W Video enhancement with task-oriented flow Int J Comput Vis 2019 127 8 1106-1125
[111]
Xu G, Xu J, Li Z, Wang L, Sun X, Cheng M (2021) Temporal modulation network for controllable space-time video super-resolution. In: Proceedings CVPR, pp 6388–6397
[112]
Yang W, Feng J, Xie G, Liu J, Guo Z, and Yan S Video super-resolution based on spatial-temporal recurrent residual networks Comput Vis Image Underst 2018 168 79-92
[113]
Yang W, Zhang X, Tian Y, Wang W, Xue JH, and Liao Q Deep learning for single image superresolution: a brief review IEEE Trans Multimed 2019 21 12 3106-3121
[114]
Yang X, Xiang W, Zeng H, Zhang L (2021) Real-world video super-resolution: a benchmark dataset and a decomposition based learning scheme. In: Proceedings ICCV, pp 4781–4790
[115]
Yi P, Wang Z, Jiang K, Jiang J, Lu T, Tian X, Ma J (2021) Omniscient video super-resolution. In: Proceedings ICCV, pp 4429–4438
[116]
You C, Li G, Zhang Y, Zhang X, Shan H, Li M, Ju S, Zhao Z, Zhang Z, Cong W, Vannier M, Saha P, Hoffman E, and Wang G CT super-resolution GAN constrained by the identical, residual, and cycle learning ensemble (GAN-CIRCLE) IEEE Trans Med Imaging 2020 39 1 188-203
[117]
Yuan Z, Wu J, Kamata S, Ahrary A, and Yan P Fingerprint image enhancement by super resolution with early stopping Proc ICIS 2009 4 527-531
[118]
Yuan Q, Zhang L, Shen H, and Li P Adaptive multiple-frame image super-resolution based on U-curve IEEE Trans Image Process 2010 19 12 3157-3170
[119]
Zhang K, Zuo W, Zhang L (2018a) Learning a single convolutional super-resolution network for multiple degradations. In: Proceedings CVPR, pp 3262–3271
[120]
Zhang R, Isola P, Efros AA, Shechtman E, Wang O (2018b) The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings CVPR, pp 586–595
[121]
Zhang H, Liu D, Xiong Z (2019) Two-stream action recognition-oriented video super-resolution. In: Proceedings ICCV, pp 8799–8808
[122]
Zhao W, Sawhney H (2002) Is super-resolution with optical flow feasible? In: Proceedings ECCV, pp 599–613
[123]
Zhao H, Qi X, Shen X, Shi J, Jia J (2018) ICNet for real-time semantic segmentation on high-resolution images. In: Proceedings ECCV, pp 418–434
[124]
Zhu H, Li L, Wu J, Dong W, Shi G (2020) MetaIQA: deep meta-learning for no-reference image quality assessment. In: Proceedings CVPR, pp 14143–14152

Cited By

View all
  • (2024)MS-RAFT+: High Resolution Multi-Scale RAFTInternational Journal of Computer Vision10.1007/s11263-023-01930-7132:5(1835-1856)Online publication date: 1-May-2024
  • (2024)A Semantic Fusion-Based Model for Infrared Small Target DetectionAdvanced Intelligent Computing Technology and Applications10.1007/978-981-97-5678-0_10(109-120)Online publication date: 5-Aug-2024
  • (2023)DTCM: Joint Optimization of Dark Enhancement and Action Recognition in VideosIEEE Transactions on Image Processing10.1109/TIP.2023.328625432(3507-3520)Online publication date: 1-Jan-2023

Index Terms

  1. Optical flow for video super-resolution: a survey
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image Artificial Intelligence Review
          Artificial Intelligence Review  Volume 55, Issue 8
          Dec 2022
          783 pages

          Publisher

          Kluwer Academic Publishers

          United States

          Publication History

          Published: 01 December 2022

          Author Tags

          1. Video super-resolution
          2. Optical flow
          3. Optical Flow-based video super-resolution
          4. Temporal dependency

          Qualifiers

          • Research-article

          Funding Sources

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 11 Jan 2025

          Other Metrics

          Citations

          Cited By

          View all
          • (2024)MS-RAFT+: High Resolution Multi-Scale RAFTInternational Journal of Computer Vision10.1007/s11263-023-01930-7132:5(1835-1856)Online publication date: 1-May-2024
          • (2024)A Semantic Fusion-Based Model for Infrared Small Target DetectionAdvanced Intelligent Computing Technology and Applications10.1007/978-981-97-5678-0_10(109-120)Online publication date: 5-Aug-2024
          • (2023)DTCM: Joint Optimization of Dark Enhancement and Action Recognition in VideosIEEE Transactions on Image Processing10.1109/TIP.2023.328625432(3507-3520)Online publication date: 1-Jan-2023

          View Options

          View options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media