Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1007/978-3-031-19778-9_12guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Order Learning Using Partially Ordered Data via Chainization

Published: 23 October 2022 Publication History

Abstract

We propose the chainization algorithm for effective order learning when only partially ordered data are available. First, we develop a binary comparator to predict missing ordering relations between instances. Then, by extending the Kahn’s algorithm, we form a chain representing a linear ordering of instances. We fine-tune the comparator over pseudo pairs, which are sampled from the chain, and then re-estimate the linear ordering alternately. As a result, we obtain a more reliable comparator and a more meaningful linear ordering. Experimental results show that the proposed algorithm yields excellent rank estimation performances under various weak supervision scenarios, including semi-supervised learning, domain adaptation, and bipartite cases. The source codes are available at https://github.com/seon92/Chainization.

References

[1]
Barsoum, E., Zhang, C., Ferrer, C.C., Zhang, Z.: Training deep networks for facial expression recognition with crowd-sourced label distribution. In: ICMI (2016)
[2]
Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a "Siamese" time delay neural network. In: NIPS (1993)
[3]
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT press (2009)
[4]
Diaconis P and Graham RL Spearman’s footrule as a measure of disarray J. Roy. Stat. Soc.: Ser. B (Methodol.) 1977 39 2 262-268
[5]
Diaz, R., Marathe, A.: Soft labels for ordinal regression. In: CVPR (2019)
[6]
Jech, T.J.: The Axiom of Choice. Courier Corporation (2008)
[7]
Kahn AB Topological sorting of large networks Commun. ACM 1962 5 11 558-562
[8]
Knuth DE and Szwarcfiter JL A structured program to generate all topological sorting arrangements Inf. Process. Lett. 1974 2 6 153-157
[9]
Lee, S.H., Kim, C.S.: Deep repulsive clustering of ordered data based on order-identitiy decomposition. In: ICLR (2021)
[10]
Levi, G., Hassner, T.: Age and gender classification using convolutional neural networks. In: CVPR Workshops (2015)
[11]
Li, W., Huang, X., Lu, J., Feng, J., Zhou, J.: Learning probabilistic ordinal embeddings for uncertainty-aware regression. In: CVPR (2021)
[12]
Lim, K., Shin, N.H., Lee, Y.Y., Kim, C.S.: Order learning and its application to age estimation. In: ICLR (2020)
[13]
Liu, X., Li, S., Ge, Y., Ye, P., You, J., Lu, J.: Recursively conditional gaussian for ordinal unsupervised domain adaptation. In: ICCV (2021)
[14]
Liu, Y., Kong, A.W.K., Goh, C.K.: A constrained deep neural network for ordinal regression. In: CVPR (2018)
[15]
Liu, Y., Wang, F., Kong, A.W.K.: Probabilistic deep ordinal regression based on Gaussian processes. In: CVPR (2019)
[16]
Niu, Z., Zhou, M., Wang, L., Gao, X., Hua, G.: Ordinal regression with multiple output CNN for age estimation. In: CVPR (2016)
[17]
Pan, H., Han, H., Shan, S., Chen, X.: Mean-variance loss for deep age estimation from a face. In: CVPR (2018)
[18]
Parikh, D., Grauman, K.: Relative attributes. In: ICCV (2011)
[19]
Pearce DJ and Kelly PH A dynamic topological sort algorithm for directed acyclic graphs J. Exp. Algorithmics 2007 11 1-7
[20]
Reingold, E.M., Nievergelt, J., Deo, N.: Combinatorial Algorithms: Theory and Practice. Prentice Hall (1977)
[21]
Ricanek, K., Tesafaye, T.: MORPH: A longitudinal image database of normal adult age-progression. In: FGR (2006)
[22]
Schifanella, R., Redi, M., Aiello, L.M.: An image is worth more than a thousand favorites: Surfacing the hidden beauty of Flickr pictures. In: ICWSM (2015)
[23]
Schröder, B.S.W.: Ordered Sets: An Introduction. Springer (2003)
[24]
Shin, N.H., Lee, S.H., Kim, C.S.: Moving window regression: a novel approach to ordinal regression. In: CVPR (2022)
[25]
Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. In: NIPS (2020)
[26]
Souri, Y., Noury, E., Adeli, E.: Deep relative attributes. In: ACCV (2016)
[27]
Tarjan R Finding dominators in directed graphs SIAM J. Comput. 1974 3 1 62-89
[28]
Zhang, B., et al.: FlexMatch: boosting semi-supervised learning with curriculum pseudo labeling. In: NIPS (2021)
[29]
Zhang, Y., Liu, L., Li, C., Loy, C.C.: Quantifying facial age by posterior of age comparisons. In: BMVC (2017)
[30]
Zou Y, Yang X, Yu Z, Kumar BVKV, and Kautz J Vedaldi A, Bischof H, Brox T, and Frahm J-M Joint disentangling and adaptation for cross-domain person re-identification Computer Vision – ECCV 2020 2020 Cham Springer 87-104

Cited By

View all
  • (2024)Teach CLIP to Develop a Number Sense for Ordinal RegressionComputer Vision – ECCV 202410.1007/978-3-031-73013-9_1(1-17)Online publication date: 29-Sep-2024
  • (2024)Get Your Embedding Space in Order: Domain-Adaptive Regression for Forest MonitoringComputer Vision – ECCV 202410.1007/978-3-031-72980-5_6(94-111)Online publication date: 29-Sep-2024
  • (2024)Forbes: Face Obfuscation Rendering via Backpropagation Refinement SchemeComputer Vision – ECCV 202410.1007/978-3-031-72890-7_4(54-70)Online publication date: 29-Sep-2024

Index Terms

  1. Order Learning Using Partially Ordered Data via Chainization
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image Guide Proceedings
          Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XIII
          Oct 2022
          803 pages
          ISBN:978-3-031-19777-2
          DOI:10.1007/978-3-031-19778-9

          Publisher

          Springer-Verlag

          Berlin, Heidelberg

          Publication History

          Published: 23 October 2022

          Author Tags

          1. Order learning
          2. Topological sorting
          3. Rank estimation
          4. Facial age estimation
          5. Aesthetic assessment
          6. Facial expression recognition

          Qualifiers

          • Article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 01 Jan 2025

          Other Metrics

          Citations

          Cited By

          View all
          • (2024)Teach CLIP to Develop a Number Sense for Ordinal RegressionComputer Vision – ECCV 202410.1007/978-3-031-73013-9_1(1-17)Online publication date: 29-Sep-2024
          • (2024)Get Your Embedding Space in Order: Domain-Adaptive Regression for Forest MonitoringComputer Vision – ECCV 202410.1007/978-3-031-72980-5_6(94-111)Online publication date: 29-Sep-2024
          • (2024)Forbes: Face Obfuscation Rendering via Backpropagation Refinement SchemeComputer Vision – ECCV 202410.1007/978-3-031-72890-7_4(54-70)Online publication date: 29-Sep-2024

          View Options

          View options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media