Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Performance of massive MIMO‐NOMA systems with low complexity group SIC receivers and low‐resolution ADCs

Published: 13 August 2024 Publication History

Abstract

Massive multiple‐input multiple‐output and non‐orthogonal multiple access (MIMO‐NOMA) with low‐resolution analog‐to‐digital converters (ADCs) have been widely considered for the next‐generation wireless communication systems. However, the performance of the system including power‐scaling law has not been well investigated for the practical low complexity receivers. Employing the additive quantization noise model, we derive asymptotic approximate expressions of the spectrum efficiency for the system with group successive interference cancellation (GSIC) receivers over Rician fading channels. Based on these approximations, we conduct a unified asymptotic analysis for the system with linear, SIC, and GSIC receivers. The analysis reveals the transmission power can be scaled by the number of antennas for the system with GSIC receivers and shows the effects of crucial parameters including the number of groups, resolution bits, and antennas on the performance. Given a quality of service, the minimum data transmission power is also calculated for each user and the corresponding approximate power allocation is derived. The asymptotic analysis and the accuracy of the power allocation approximation are then verified by simulation results. Numerical results also demonstrate that high spectrum efficiency and energy efficiency can be achieved by the system with medium‐resolution ADCs and low complexity maximum ratio combining‐GSIC receivers with a small number of groups.

Graphical Abstract

This paper studies the performance of massive multiple‐input multiple‐output and non‐orthogonal multiple access systems with group successive interference cancellation receivers using low‐resolution analog‐to‐digital converters. For the implementation concern, a fast power allocation scheme is designed for a given quality of service.

References

[1]
Chowdhury, M.Z., Shahjalal, M., Ahmed, S., Jang, Y.M.: 6G wireless communication systems: applications, requirements, technologies, challenges, and research directions. IEEE Open J. Commun. Soc. 1, 957–975 (2020)
[2]
Wei, Z., Yang, L., Ng, D.W.K., Yuan, J., Hanzo, L.: On the performance gain of NOMA over OMA in uplink communication systems. IEEE Trans. Commun. 68(1), 536–568 (2020)
[3]
Chi, Y., Liu, L., Song, G., Yuen, C., Guan, Y.L., Li, Y.: Practical MIMO‐NOMA: low complexity and capacity‐approaching solution. IEEE Trans. Wireless Commun. 17(9), 6251–6264 (2018)
[4]
Makki, B., Chitti, K., Behravan, A., Alouini, M.‐S.: A survey of NOMA: current status and open research challenges. IEEE Open J. Commun. Soc. 1, 179–189 (2020)
[5]
Maraqa, O., Rajasekaran, A.S., Al‐Ahmadi, S., Yanikomeroglu, H., Sait, S.M.: A survey of rate‐optimal power domain NOMA with enabling technologies of future wireless networks. IEEE Commun. Surv. Tutorials 22(4), 2192–2235 (2020)
[6]
Liu, Y., Zhang, S., Mu, X., Ding, Z., Schober, R., Al‐Dhahir, N., Hossain, E., Shen, X.: Evolution of NOMA toward next generation multiple access (NGMA) for 6G. IEEE J. Sel. Areas Commun. 40(4), 1037–1071 (2022)
[7]
Ding, Z., Schober, R., Poor, H.V.: Unveiling the importance of SIC in NOMA systems—part 1: state of the art and recent findings. IEEE Commun. Lett. 24(11), 2373–2377 (2020)
[8]
Zhang, J., Björnson, E., Matthaiou, M., Ng, D.W.K., Yang, H., Love, D.J.: Prospective multiple antenna technologies for beyond 5G. IEEE J. Sel. Areas Commun. 38(8), 1637–1660 (2020)
[9]
Fan, L., Jin, S., Wen, C.‐K., Zhang, H.: Uplink achievable rate for massive MIMO systems with low‐resolution ADC. IEEE Commun. Lett. 19(12), 2186–2189 (2015)
[10]
Dong, P., Zhang, H., Wu, Q., Li, G.Y.: Spatially correlated massive MIMO relay systems with low‐resolution ADCs. IEEE Trans. Veh. Technol. 69(6), 6541–6553 (2020)
[11]
Dong, P., Zhang, H., Xu, W., Li, G.Y., You, X.: Performance analysis of multiuser massive MIMO with spatially correlated channels using low‐precision ADC. IEEE Commun. Lett. 22(1), 205–208 (2018)
[12]
Fan, L., Qiao, D., Jin, S., Wen, C.‐K., Matthaiou, M.: Optimal pilot length for uplink massive MIMO systems with low‐resolution ADC. In: 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 1–5. IEEE, Piscataway, NJ (2016)
[13]
Jacobsson, S., Durisi, G., Coldrey, M., Gustavsson, U., Studer, C.: Throughput analysis of massive MIMO uplink with low‐resolution ADCs. IEEE Trans. Wireless Commun. 16(6), 4038–4051 (2017)
[14]
Zhang, J., Dai, L., Sun, S., Wang, Z.: On the spectral efficiency of massive MIMO systems with low‐resolution ADCs. IEEE Commun. Lett. 20(5), 842–845 (2016)
[15]
Ghacham, S., Benjillali, M., Van der Perre, L., Guennoun, Z.: Rate analysis of uplink massive MIMO with low‐resolution ADCs and ZF detectors over Rician fading channels. IEEE Commun. Lett. 23(9), 1631–1635 (2019)
[16]
Liang, N., Zhang, W.: Mixed‐ADC massive MIMO uplink in frequency‐selective channels. IEEE Trans. Commun. 64(11), 4652–4666 (2016)
[17]
Mollén, C., Choi, J., Larsson, E.G., Heath, R.W.: Uplink performance of wideband massive MIMO with one‐bit ADCs. IEEE Trans. Wireless Commun. 16(1), 87–100 (2017)
[18]
Domouchtsidis, S., Tsinos, C.G., Chatzinotas, S., Ottersten, B.: Joint symbol level precoding and combining for MIMO‐OFDM transceiver architectures based on one‐bit DACs and ADCs. IEEE Trans. Wireless Commun. 20(7), 4601–4613 (2021)
[19]
Sun, P., Wang, Z., Heather, R.W., Schniter, P.: Joint channel‐estimation/decoding with frequency‐selective channels and few‐bit ADCs. IEEE Trans. Signal Process. 67(4), 899–914 (2019)
[20]
Ding, Z., Schober, R., Poor, H.V.: Unveiling the importance of SIC in NOMA systems—part II: new results and future directions. IEEE Commun. Lett. 24(11), 2378–2382 (2020)
[21]
Ding, Z., Lei, X., Karagiannidis, G.K., Schober, R., Yuan, J., Bhargava, V.K.: A survey on non‐orthogonal multiple access for 5G networks: research challenges and future trends. IEEE J. Sel. Areas Commun. 35(10), 2181–2195 (2017)
[22]
Islam, S.R., Avazov, N., Dobre, O.A., Kwak, K.‐S.: Power‐domain non‐orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Commun. Surv. Tut. 19(2), 721–742 (2016)
[23]
Wang, P., Ping, L.: On maximum eigenmode beamforming and multi‐user gain. IEEE Trans. Inf. Theory 57(7), 4170–4186 (2011)
[24]
Xu, C., Hu, Y., Liang, C., Ma, J., Ping, L.: Massive MIMO, non‐orthogonal multiple access and interleave division multiple access. IEEE Access 5, 14 728–14 748 (2017)
[25]
Zeng, M., Yadav, A., Dobre, O.A., Poor, H.V.: Energy‐efficient power allocation for MIMO‐NOMA with multiple users in a cluster. IEEE Access 6, 5170–5181 (2018)
[26]
Liu, T., Tong, J., Guo, Q., Xi, J., Yu, Y., Xiao, Z.: Energy efficiency of uplink massive MIMO systems with successive interference cancellation. IEEE Commun. Lett. 21(3), 668–671 (2016)
[27]
Liu, T., Tong, J., Guo, Q., Xi, J., Yu, Y., Xiao, Z.: Energy efficiency of massive MIMO systems with low‐resolution ADCs and successive interference cancellation. IEEE Trans. Wireless Commun. 18(8), 3987–4002 (2019)
[28]
Liu, Y., Yi, W., Ding, Z., Liu, X., Dobre, O.A., Al‐Dhahir, N.: Developing NOMA to next generation multiple access: future vision and research opportunities. IEEE Wireless Commun. 29(6), 120–127 (2022)
[29]
Yang, S., Hanzo, L.: Fifty years of MIMO detection: the road to large‐scale MIMOs. IEEE Commun. Surv. Tut. 17(4), 1941–1988 (2015)
[30]
Liu, T., Tong, J., Yuan, J., Xi, J., Wang, H., Zhao, L.: Massive MIMO with group SIC receivers and low‐resolution ADCs over Rician fading channels. IEEE Trans. Veh. Technol. 72(3), 3359–3375 (2022)
[31]
He, X., Huang, Z., Wang, H., Song, R.: Sum rate analysis for massive MIMO‐NOMA uplink system with group‐level successive interference cancellation. IEEE Wireless Commun. Lett. 12(7), 1194–1198 (2023)
[32]
Ding, Z., Fan, P., Poor, H.V.: Impact of user pairing on 5G nonorthogonal multiple‐access downlink transmissions. IEEE Trans. Veh. Technol. 65(8), 6010–6023 (2016)
[33]
Yang, M., Chen, J., Ding, Z., Liu, Y., Lv, L., Yang, L.: Joint power allocation and decoding order selection for NOMA systems: outage‐optimal strategies. IEEE Trans. Wireless Commun. 23(1), 290–304 (2024)
[34]
Yang, M., Chen, J., Ding, Z., Lv, L., Al‐Dhahir, N., Yang, L.: Rate‐aware user pair scheduling with joint power allocation and decoding order selection in NOMA systems. IEEE Trans. Commun. 71(9), 5303–5319 (2023)
[35]
Yin, Y., Liu, M., Gui, G., Gacanin, H., Sari, H.: Minimizing delay for MIMO‐NOMA resource allocation in UAV‐assisted caching networks. IEEE Trans. Veh. Technol. 72(4), 4728–4732 (2023)
[36]
Zhang, R., Hu, X., Liu, H., Zhang, Y., Luo, Z., Wang, H.: Performance analysis for MIMO‐NOMA systems with transceivers and group‐wise SIC. IEEE Trans. Veh. Technol. 72(12), 16 221–16 235 (2023)
[37]
Björnson, E., Sanguinetti, L.: Power scaling laws and near‐field behaviors of massive MIMO and intelligent reflecting surfaces. IEEE Open J. Commun. Soc. 1, 1306–1324 (2020)
[38]
Zhi, K., Pan, C., Ren, H., Wang, K.: Power scaling law analysis and phase shift optimization of RIS‐aided massive MIMO systems with statistical CSI. IEEE Trans. Commun. 70(5), 3558–3574 (2022)
[39]
Zhang, J., Dai, L., He, Z., Jin, S., Li, X.: Performance analysis of mixed‐ADC massive MIMO systems over Rician fading channels. IEEE J. Sel. Areas Commun. 35(6), 1327–1338 (2017)
[40]
Liu, T., Tong, J., Guo, Q., Xi, J., Yu, Y., Xiao, Z.: On the performance of massive MIMO systems with low‐resolution ADCs and MRC receivers over Rician fading channels. IEEE Syst. J. 15(3), 4514–4524 (2021)
[41]
Dong, P., Zhang, H., Xu, W., You, X.: Efficient low‐resolution ADC relaying for multiuser massive MIMO system. IEEE Trans. Veh. Technol. 66(12), 11 039–11 056 (2017)
[42]
Dong, Y., Qiu, L.: Spectral efficiency of massive MIMO systems with low‐resolution ADCs and MMSE receiver. IEEE Commun. Lett. 21(8), 1771–1774 (2017)
[43]
Zhang, Q., Jin, S., Wong, K.‐K., Zhu, H., Matthaiou, M.: Power scaling of uplink massive MIMO systems with arbitrary‐rank channel means. IEEE J. Sel. Top. Signal Process. 8(5), 966–981 (2014)
[44]
Özdogan, Ö., Björnson, E., Larsson, E.G.: Massive MIMO with spatially correlated Rician fading channels. IEEE Trans. Commun. 67(5), 3234–3250 (2019)
[45]
Jiang, H., Xiong, B., Zhang, H., Basar, E.: Physics‐based 3D end‐to‐end modeling for double‐RIS assisted non‐stationary UAV‐to‐ground communication channels. IEEE Trans. Commun. 71(7), 4247–4261 (2023)
[46]
Azari, M.M., Rosas, F., Chen, K.‐C., Pollin, S.: Ultra reliable UAV communication using altitude and cooperation diversity. IEEE Trans. Commun. 66(1), 330–344 (2018)
[47]
Jiang, H., Xiong, B., Zhang, H., Basar, E.: Hybrid far‐ and near‐field modeling for reconfigurable intelligent surface assisted V2V channels: a sub‐array partition based approach. IEEE Trans. Wireless Commun. 22(11), 8290–8303 (2023)
[48]
Di Renzo, M., Zappone, A., Debbah, M., Alouini, M.‐S., Yuen, C., de Rosny, J., Tretyakov, S.: Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research, and the road ahead. IEEE J. Sel. Areas Commun. 38(11), 2450–2525 (2020)

Index Terms

  1. Performance of massive MIMO‐NOMA systems with low complexity group SIC receivers and low‐resolution ADCs
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image IET Communications
        IET Communications  Volume 18, Issue 18
        November 2024
        168 pages
        EISSN:1751-8636
        DOI:10.1049/cmu2.v18.18
        Issue’s Table of Contents
        This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

        Publisher

        John Wiley & Sons, Inc.

        United States

        Publication History

        Published: 13 August 2024

        Author Tags

        1. 6G
        2. MIMO systems
        3. mobile communication
        4. performance evaluation

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 08 Dec 2024

        Other Metrics

        Citations

        View Options

        View options

        Login options

        Full Access

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media