Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1609/aaai.v33i01.33018239guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article
Free access

Residual compensation networks for heterogeneous face recognition

Published: 27 January 2019 Publication History

Abstract

Heterogeneous Face Recognition (HFR) is a challenging task due to large modality discrepancy as well as insufficient training images in certain modalities. In this paper, we propose a new two-branch network architecture, termed as Residual Compensation Networks (RCN), to learn separated features for different modalities in HFR. The RCN incorporates a residual compensation (RC) module and a modality discrepancy loss (MD loss) into traditional convolutional neural networks. The RC module reduces modal discrepancy by adding compensation to one of the modalities so that its representation can be close to the other modality. The MD loss alleviates modal discrepancy by minimizing the cosine distance between different modalities. In addition, we explore different architectures and positions for the RC module, and evaluate different transfer learning strategies for HFR. Extensive experiments on IIIT-D Viewed Sketch, Forensic Sketch, CASIA NIR-VIS 2.0 and CUHK NIR-VIS show that our RCN outperforms other state-of-the-art methods significantly.

References

[1]
Bhatt, H. S.; Bharadwaj, S.; Singh, R.; and Vatsa, M. 2012a. Memetic approach for matching sketches with digital face images.
[2]
Bhatt, H. S.; Bharadwaj, S.; Singh, R.; and Vatsa, M. 2012b. Memetically optimized mcwld for matching sketches with digital face images. IEEE T-IFS 7(5):1522–1535.
[3]
Cao, K.; Rong, Y.; Li, C.; Tang, X.; and Loy, C. C. 2018. Pose-robust face recognition via deep residual equivariant mapping. CoRR abs/1803.00839.
[4]
Chen, B. C.; Chen, C. S.; and Hsu, W. H. 2015. Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset. IEEE T-MM 17(6):804–815.
[5]
Gong, D.; Li, Z.; Huang, W.; Li, X.; and Tao, D. 2017. Heterogeneous face recognition: A common encoding feature discriminant approach. IEEE TIP 26(5):2079–2089.
[6]
Guo, Y.; Zhang, L.; Hu, Y.; He, X.; and Gao, J. 2016. Ms-celeb-1m: A dataset and benchmark for large-scale face recognition. In ECCV, 87–102.
[7]
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In ICCV, volume 00, 1026–1034.
[8]
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learning for image recognition. In CVPR.
[9]
He, R.; Wu, X.; Sun, Z.; and Tan, T. 2017. Wasserstein cnn: Learning invariant features for nir-vis face recognition. IEEE T-PAMI PP(99):1–1.
[10]
Hu, G.; Hua, Y.; Yuan, Y.; Zhang, Z.; Lu, Z.; Mukherjee, S. S.; Hospedales, T. M.; Robertson, N. M.; and Yang, Y. 2017. Attribute-enhanced face recognition with neural tensor fusion networks. In ICCV, 3764–3773.
[11]
Hu, G.; Peng, X.; Yang, Y.; Hospedales, T. M.; and Verbeek, J. 2018. Frankenstein: Learning deep face representations using small data. IEEE TIP 27(1):293–303.
[12]
Huang, G. B.; Ramesh, M.; Berg, T.; and Learned-Miller, E. 2007. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst.
[13]
Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; and Darrell, T. 2014. Caffe: Convolutional architecture for fast feature embedding.
[14]
Kemelmacher-Shlizerman, I.; Seitz, S. M.; Miller, D.; and Brossard, E. 2016. The megaface benchmark: 1 million faces for recognition at scale. In CVPR, 4873–4882.
[15]
Klare, B. F., and Jain, A. K. 2013. Heterogeneous face recognition using kernel prototype similarities. IEEE T-PAMI 35(6):1410–1422.
[16]
Klare, B. F.; Li, Z.; and Jain, A. K. 2011. Matching forensic sketches to mug shot photos. IEEE T-PAMI 33(3):639–646.
[17]
Li, S. Z.; Yi, D.; Lei, Z.; and Liao, S. 2013. The CASIA NIRVIS 2.0 face database. In CVPR Workshops, 348–353.
[18]
Li, Z. F.; Gong, D.; Qiao, Y.; and Tao, D. 2014. Common feature discriminant analysis for matching infrared face images to optical face images. IEEE TIP 23(6):2436–2445.
[19]
Li, Z.; Gong, D.; Li, Q.; Tao, D.; and Li, X. 2016. Mutual component analysis for heterogeneous face recognition. ACM T-IST 7(3):28.
[20]
Liao, S.; Yi, D.; Lei, Z.; Qin, R.; and Li, S. Z. 2009. Heterogeneous face recognition from local structures of normalized appearance. In International Conference on Advances in Biometrics, 209–218.
[21]
Liu, Z.; Luo, P.; Wang, X.; and Tang, X. 2015. Deep learning face attributes in the wild. In ICCV, 3730–3738.
[22]
Liu, X.; Song, L.; Wu, X.; and Tan, T. 2016. Transferring deep representation for nir-vis heterogeneous face recognition. In International Conference on Biometrics (ICB), 1–8.
[23]
Parkhi, O. M.; Vedaldi, A.; and Zisserman, A. 2015. Deep face recognition. In BMVC, 41.1–41.12.
[24]
Peng, C.; Gao, X.; Wang, N.; and Li, J. 2016. Sparse graphical representation based discriminant analysis for heterogeneous face recognition. CoRR abs/1607.00137.
[25]
Peng, C.; Gao, X.; Wang, N.; and Li, J. 2017. Graphical representation for heterogeneous face recognition. IEEE T-PAMI 39(2):301–312.
[26]
Rebuffi, S. A.; Bilen, H.; and Vedaldi, A. 2018. Efficient parametrization of multi-domain deep neural networks.
[27]
Sarfraz, M. S., and Stiefelhagen, R. 2015. Deep perceptual mapping for thermal to visible face recognition. CoRR.
[28]
Saxena, S., and Verbeek, J. 2016. Heterogeneous face recognition with CNNs. In ECCV, 483–491.
[29]
Schroff, F.; Kalenichenko, D.; and Philbin, J. 2015. FaceNet: A unified embedding for face recognition and clustering. In CVPR, 815–823.
[30]
Shi, H.; Wang, X.; Yi, D.; Lei, Z.; Zhu, X.; and Li, S. Z. 2017. Cross-modality face recognition via heterogeneous joint bayesian. IEEE SPL 24(1):81–85.
[31]
Song, L.; Zhang, M.; Wu, X.; and He, R. 2017. Adversarial discriminative heterogeneous face recognition.
[32]
Sun, Y.; Wang, X.; and Tang, X. 2014a. Deep learning face representation by joint identification-verification. In NIPS.
[33]
Sun, Y.; Wang, X.; and Tang, X. 2014b. Deep learning face representation from predicting 10,000 classes. In CVPR.
[34]
Wen, Y.; Zhang, K.; Li, Z.; and Qiao, Y. 2016. A discriminative feature learning approach for deep face recognition. In ECCV, 499–515.
[35]
Wu, X.; He, R.; Sun, Z.; and Tan, T. 2015. A light cnn for deep face representation with noisy labels. Computer Science.
[36]
Wu, X.; Song, L.; He, R.; and Tan, T. 2017. Coupled deep learning for heterogeneous face recognition. CoRR.
[37]
Yi, D.; Lei, Z.; Liao, S.; and Li, S. Z. 2014. Learning face representation from scratch. Computer Science.
[38]
Zhang, X.; Zhang, L.; Wang, X. J.; and Shum, H. Y. 2012. Finding celebrities in billions of web images. IEEE T-MM 14(4):995–1007.
[39]
Zhang, K.; Zhang, Z.; Li, Z.; and Qiao, Y. 2016. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE SPL 23(10):1499–1503.
[40]
Zhang, W.; Wang, X.; and Tang, X. 2011. Coupled information-theoretic encoding for face photo-sketch recognition. In CVPR, 513–520.

Cited By

View all
  • (2023)Cross-Modal and Multi-Attribute Face Recognition: A BenchmarkProceedings of the 31st ACM International Conference on Multimedia10.1145/3581783.3612329(271-279)Online publication date: 26-Oct-2023
  • (2022)Physically-based face rendering for NIR-VIS face recognitionProceedings of the 36th International Conference on Neural Information Processing Systems10.5555/3600270.3601923(22752-22764)Online publication date: 28-Nov-2022

Index Terms

  1. Residual compensation networks for heterogeneous face recognition
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Guide Proceedings
        AAAI'19/IAAI'19/EAAI'19: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence
        January 2019
        10088 pages
        ISBN:978-1-57735-809-1

        Sponsors

        • Association for the Advancement of Artificial Intelligence

        Publisher

        AAAI Press

        Publication History

        Published: 27 January 2019

        Qualifiers

        • Research-article
        • Research
        • Refereed limited

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)88
        • Downloads (Last 6 weeks)18
        Reflects downloads up to 08 Feb 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2023)Cross-Modal and Multi-Attribute Face Recognition: A BenchmarkProceedings of the 31st ACM International Conference on Multimedia10.1145/3581783.3612329(271-279)Online publication date: 26-Oct-2023
        • (2022)Physically-based face rendering for NIR-VIS face recognitionProceedings of the 36th International Conference on Neural Information Processing Systems10.5555/3600270.3601923(22752-22764)Online publication date: 28-Nov-2022

        View Options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Login options

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media