Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Meta analysis algorithms for microarray gene expression data using Gene Regulatory Networks

Published: 01 October 2010 Publication History

Abstract

Using microarrays, researchers are able to obtain a genome wide snapshot of a biological system under a given experimental context. Fortunately, a significant amount of gene regulation data is publicly available through various databases. We present a system that uses extra knowledge in published gene regulation relationships to examine findings in a microarray experiment and to aid biologists in generating hypotheses. Two algorithms are developed to highlight consistencies as well as inconsistencies between the data. We demonstrate that consistent as well as inconsistent subnetworks found in this manner are important in the discovery of active pathways and novel findings.

References

[1]
Akutsu, T., Miyano, S. and Kuhara, S. (1999) 'Identification of genetic networks from a small number of gene expression patterns under the boolean network model', Proceedings of the Pacific Symposium on Biocomputing, Hawaii, USA, pp. 17-28.
[2]
Ashburner, M., Ball, C., Blake, J., Botstein, D., Butler, H., Cherry, J., Davis, A., Dolinski, K., Dwight, S., Eppig, J., Harris, M., Hill, D., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J., Richardson, J., Ringwald, M., Rubin, G. and Sherlock, G. (2000) 'Gene ontology: tool for the unification of biology. The gene ontology consortium', Nature Genetics, Vol. 25, pp. 25-29.
[3]
Baumbach, J. and Apeltsin, L. (2008) 'Linking cytoscape and the corynebacterial reference database CoryneRegNet', BMC Genomics, Vol. 9, No. 1, p. 184.
[4]
Cline, M.S., Smoot, M., Cerami, E., Kuchinsky, A., Landys, N., Workman, C., Christmas, R., Avila-Campilo, I., Creech, M., Gross, B., Hanspers, K., Isserlin, R., Kelley, R., Killcoyne, S., Lotia, S., Maere, S., Morris, J., Ono, K., Pavlovic, V., Pico, A.R., Vailaya, A., Wang, P.L., Adler, A., Conklin, B.R., Hood, L., Kuiper, M., Sander, C., Schmulevich, I., Schwikowski, B., Warner, G.J., Ideker, T. and Bader, G. (2007) 'Integration of biological networks and gene expression data using Cytoscape', Nature Protocols, Vol. 2, No. 10, pp. 2366-2382.
[5]
Dahlquist, K.D., Salomonis, N., Vranizan, K., Lawlor, S.C. and Conklin, B.R. (2002) 'GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways', Nature Genetics, Vol. 31, No. 1, pp. 19, 20.
[6]
Doniger, S.W., Salomonis, N., Dahlquist, K.D., Vranizan, K., Lawlor, S.C. and Conklin, B.R. (2003) 'MAPPFinder: using gene ontology and GenMAPP to create a global gene-expression profile from microarray data', Genome Biology, Vol. 4, No. 1, p. R7.
[7]
Gutierrez-Rios, R.M., Rosenblueth, D.A., Loza, J.A., Huerta, A.M., Glasner, J.D., Blattner, F.R. and Collado-Vides, J. (2003) 'Regulatory network of escherichia coli: consistency between literature knowledge and microarray profiles', Genome Research, Vol. 13, No. 11, pp. 2435-2443.
[8]
Guziolowski, C., Veber, P., Borgne, M.L., Radulescu, O. and Siegel, A. (2007) 'Checking consistency between expression data and large scale regulatory networks: a case study', Journal of Biological Physics and Chemistry, Vol. 7, pp. 37-43.
[9]
Kalajzic, I., Staal, A., Yang, W-P., Wu, Y., Johnson, S.E., Feyen, J.H.M., Krueger, W., Maye, P., Yu, F., Zhao, Y., Kuo, L., Gupta, R.R., Achenie, L.E.K., Wang, H-W., Shin, D-G. and Rowe, D.W. (2005) 'Expression profile of osteoblast lineage at defined stages of differentiation', Journal of Biological Chemistry, Vol. 280, No. 26, pp. 24618-24626.
[10]
Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh, M., Kawashima, S., Katayama, T., Araki, M. and Hirakawa, M. (2006) 'From genomics to chemical genomics: new developments in KEGG', Nucleic Acids Research, Vol. 34, pp. D354-D357.
[11]
Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. and Hattori, M. (2004) 'The KEGG resource for deciphering the genome', Nucleic Acids Research, Vol. 32 (90001), No. 32, pp. 277-280.
[12]
Karp, P., Riley, M., Saier, M., Paulsen, I., Collado-Vides, J., Paley, S., Pellegrini-Toole, A., Bonavides, C. and Gama-Castro, S. (2002a) 'The EcoCyc database', Nucleic Acids Research, Vol. 30, No. 1, pp. 56-58.
[13]
Karp, P., Riley, M., Paley, S., Pellegrini-Toole, A. (2002b) 'The MetaCyc database', Nucleic Acids Research, Vol. 30, No. 1, pp. 59-61.
[14]
Kauffman, S. (1969) 'Metabolic stability and epigenesis in randomly connected nets', Journal of Theoretical Biology, Vol. 22, pp. 437-467.
[15]
Kirkpatrick, S., Gelatt, C. and Vecchi, M. (1983) 'Optimization by simulated annealing', Science, Vol. 220, No. 4598, pp. 671-680.
[16]
Lundy, M. (1985) 'Applications of the annealing algorithm to combinatorial problems in statistics', Biometrika, Vol. 72, No. 1, pp. 191-198.
[17]
Noman, N. and Iba, H. (2007) 'Inferring gene regulatory networks using differential evolution with local search heuristics', IEEE/ACM Transactions on Computational Biology and Bioinformatics, Vol. 4, No. 4, pp. 634-647.
[18]
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) 'Cytoscape: a software environment for integrated models of biomolecular interaction networks', Genome Research, Vol. 13, No. 11, pp. 2498-2504.
[19]
Shmulevich, I. and Zhang, W. (2002) 'Binary analysis and optimization-based normalization of gene expression data', Bioinformatics, Vol. 18, No. 4, pp. 555-565.
[20]
Van Laarhoven, P.J.M. and Aarts, E.H.L. (1987) Simulated Annealing: Theory and Applications, D. Reidel Publishing Company, Dordrecht, Holland, p. 9.
[21]
Chen, T., He, H.L. and Church, G.M. (1999) 'Modeling gene expression with differential equations', Proceedings of the Pacific Symposium on Biocomputing, Hawaii, USA, pp. 29-40.
[22]
Friedman, N., Linial, M., Nachman, I. and Pe'er, D. (2000) 'Using bayesian networks to analyze expression data', Journal of Computational Biology, Vol. 7, No. 3, pp. 601-620.
[23]
Imoto, S., Higuchi, T., Goto, T., Tashiro, K., Kuhara, S. and Miyano, S. (2003) 'Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks', Proceedings of the 2003 IEEE Bioinformatics Conference, 2003. CSB 2003, Stanford, California, USA, pp. 104-113.
[24]
Liang, S., Fuhrman, S. and Somogyi, R. (1998) 'REVEAL, a general reverse engineering algorithm for inference of genetic network architectures', Proceedings of the Pacific Symposium on Biocomputing, Hawaii, USA, p. 22.
[25]
Mjolsness, E., Sharp, D.H. and Reinitz, J. (1991) 'A connectionist model of development', Journal of Theoretical Biology, Vol. 152, No. 4, pp. 429-453.
[26]
Vert, J-P., Qiu, J. and Noble, W. (2007) 'A new pairwise kernel for biological network inference with support vector machines', BMC Bioinformatics, Vol. 8, Suppl. 10, p. S8.
[27]
Yu, J., Smith, V.A., Wang, P.P., Hartemink, A.J. and Jarvis, E.D. (2004) 'Advances to Bayesian network inference for generating causal networks from observational biological data', Bioinformatics, Vol. 20, No. 18, pp. 3594-3603.
[28]
Yu, T. and Li, K-C. (2005) 'Inference of transcriptional regulatory network by two-stage constrained space factor analysis', Bioinformatics, Vol. 21, No. 21, pp. 4033-4038.

Cited By

View all
  • (2014)Identification of glioma cancer-alerted gene markers based on a diagnostic outcome correlation analysis preferential approachInternational Journal of Data Mining and Bioinformatics10.1504/IJDMB.2014.0577789:1(67-88)Online publication date: 1-Nov-2014
  • (2013)Sample-space-based feature extraction and class preserving projection for gene expression dataInternational Journal of Data Mining and Bioinformatics10.1504/IJDMB.2013.0554988:2(224-246)Online publication date: 1-Jul-2013
  1. Meta analysis algorithms for microarray gene expression data using Gene Regulatory Networks

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image International Journal of Data Mining and Bioinformatics
    International Journal of Data Mining and Bioinformatics  Volume 4, Issue 5
    October 2010
    129 pages
    ISSN:1748-5673
    EISSN:1748-5681
    Issue’s Table of Contents

    Publisher

    Inderscience Publishers

    Geneva 15, Switzerland

    Publication History

    Published: 01 October 2010

    Author Tags

    1. Boolean networks
    2. GRN
    3. active pathways
    4. bioinformatics
    5. consistency
    6. data visualisation
    7. gene regulatory networks
    8. microarray data
    9. multiple objective optimisation
    10. simulated annealing

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 23 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2014)Identification of glioma cancer-alerted gene markers based on a diagnostic outcome correlation analysis preferential approachInternational Journal of Data Mining and Bioinformatics10.1504/IJDMB.2014.0577789:1(67-88)Online publication date: 1-Nov-2014
    • (2013)Sample-space-based feature extraction and class preserving projection for gene expression dataInternational Journal of Data Mining and Bioinformatics10.1504/IJDMB.2013.0554988:2(224-246)Online publication date: 1-Jul-2013

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media