Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Automated Solutions for Crowd Size Estimation

Published: 01 October 2018 Publication History

Abstract

The crowd phenomenon frequently occurs in dense urban living environments. Crowd counting or estimation helps to develop management strategies such as designing safe public places and evacuation plan for emergencies. These strategies are different depending upon the type of event such as political and public demonstrations, sports, and religious events. However, estimating the number of people in crowds at closed or open environments is quite challenging because of the dynamics involved in the process. In addition, crowd estimation itself poses challenges due to randomness in crowd behavior, motion, and an area's geometric specifications. Crowd behavior as well as the area parameters is studied before suggesting any possible technological solution for managing a crowd. This article presents a theoretical understanding of the major crowd size estimation approaches that cannot be achieved through the study of existing survey papers in this area, because the existing survey papers focus on particular technologies/specific areas with no or brief description of the involved steps. Besides, this article also highlights the strength and weakness of crowd size estimation solutions and their possible applications. It is, therefore, believed that the provided information would assist in developing an intelligent system for crowd management.

References

[1]
Antonini G., Bierlaire M., Weber M. 2006. Discrete choice models of pedestrian walking behavior. Transportation Research Part B: Methodological, Volume 40, pp.667-–687.
[2]
Blank M., Gorelick L., Shechtman E., Irani M., Basri R. 2005. Actions as space-time shapes. In Tenth IEEE International Conference on Computer Vision ICCV'05 Vol. Volume 2, pp. pp.1395-–1402. Beijing, China: IEEE.
[3]
Botta F., Moat H. S., Preis T. 2015. Quantifying crowd size with mobile phone and Twitter data. Royal Society Open Science, Volume 2, pp.150162.
[4]
Chen Y., Liang G., Lee K. K., Xu Y. 2007. Abnormal behavior detection by multi-SVM-based Bayesian network. In 2007 IEEE International Conference on Information Acquisition ICIA'07 pp. pp.298-–303. Seogwipo-si, South Korea: IEEE.
[5]
Cheng K. W., Chen Y. T., Fang W. H. 2013, <day>21</day>. Abnormal crowd behavior detection and localization using maximum sub-sequence search. In Doulamis A., Bertini M., Doulamis N. D., Gonzalez J., Voulodimos A. Eds., Proceedings of the 4th ACM/IEEE International Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Stream ARTEMIS'13 pp. pp.49-–58. Barcelona, Spain: ACM.
[6]
Choi H., Varian H. 2012. Predicting the present with Google Trends. Economic Record, Volume 88, pp.2-–9.
[7]
Davies A. C., Yin J. H., Velastin S. A. 1995. Crowd monitoring using image processing. Electronics & Communication Engineering Journal, Volume 7, pp.37-–47.
[8]
Dickie J. F. 1995. Major crowd catastrophes. Safety Science, Volume 18, pp.309-–320.
[9]
Forgy E. W. 1965. Cluster analysis of multivariate data: Efficiency versus interpretability of classifications. Biometrics, Volume 21, pp.768-–769.
[10]
Gayo-Avello D. 2013. A meta-analysis of state-of-the-art electoral prediction from Twitter data. Social Science Computer Review, Volume 31, pp.649-–679.
[11]
Haralick R. M. 1979. Statistical and structural approaches to texture. Proceedings of the IEEE, Volume 67, pp.786-–804.
[12]
Helbing D., Farkas I., Vicsek T. 2000. Simulating dynamical features of escape panic. Nature, Volume 407, pp.487-–490.
[13]
Helbing D., Molnar P. 1995. Social force model for pedestrian dynamics. Physical Review E, Volume 51, pp.4282.
[14]
Henke L. L. 2016. Estimating crowd size: A multidisciplinary review and framework for analysis. Business Studies Journal, Volume 8, pp.27-–38.
[15]
Hevia C. 2008. Standard errors using the delta method and GMM. mimeo.
[16]
Hu X., Zheng H., Wang W., Li X. 2013. A novel approach for crowd video monitoring of subway platforms. Optik-International Journal for Light and Electron Optics, Volume 124, pp.5301-–5306.
[17]
Huang L., Wong S. C., Zhang M., Shu C. W., Lam W. H. 2009. Revisiting Hughes' dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm. Transportation Research Part B: Methodological, Volume 43, pp.127-–141.
[18]
Hughes R. L. 2002. A continuum theory for the flow of pedestrians. Transportation Research Part B: Methodological, Volume 36, pp.507-–535.
[19]
Hung N. Q. V., Tam N. T., Lam N. T., Aberer K. 2013. An evaluation of aggregation techniques in crowdsourcing. In Lin X., Manolopoulos Y., Srivastava D., Huang G. Eds., International Conference on Web Information Systems Engineering: WISE 2013, Part II, LNCS 8181 pp. pp.1-–15. Berlin, Germany: Springer.
[20]
Jojic N., Frey B. J. 2001. Learning flexible sprites in video layers. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001 Vol. Volume 1, pp. . Kauai, HI, USA: IEEE Computer Society Press.
[21]
Junior J. C. S. J., Musse S. R., Jung C. R. 2010. Crowd analysis using computer vision techniques. IEEE Signal Processing Magazine, Volume 27, pp.66-–77.
[22]
Kristoffersen M. S., Dueholm J. V., Gade R., Moeslund T. B. 2016. Pedestrian counting with occlusion handling using stereo thermal cameras. Sensors, Volume 16, pp.62.
[23]
Kumar M. P., Torr P. H., Zisserman A. 2008. Learning layered motion segmentations of video. International Journal of Computer Vision, Volume 76, pp.301-–319.
[24]
Kumari S., Mitra S. K. 2011. Human action recognition using DFT. In 2011 Third National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics NCVPRIPG pp. pp.239-–242. Hubli, India: IEEE.
[25]
Kuo B. C., Landgrebe D. A. 2004. Nonparametric weighted feature extraction for classification. IEEE Transactions on Geoscience and Remote Sensing, Volume 42, pp.1096-–1105.
[26]
Li T., Chang H., Wang M., Ni B., Hong R., Yan S. 2015. Crowded scene analysis: A survey. IEEE Transactions on Circuits and Systems for Video Technology, Volume 25, pp.367-–386.
[27]
Lin C. H., Hsu F. S., Lin W. Y. 2010. Recognizing human actions using NWFE-based histogram vectors. EURASIP Journal on Advances in Signal Processing, Volume 2010, pp.9.
[28]
Lloyd S. 1982. Least squares quantization in PCM. IEEE Transactions on Information Theory, Volume 28, pp.129-–137.
[29]
Lowe D. G. 1999. Object recognition from local scale-invariant features. In The Proceedings of the Seventh IEEE International Conference on Computer Vision Vol. Volume 2, pp. pp.1150-–1157. Kerkyra, Greece: IEEE.
[30]
Lowe D. G. 2004. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, Volume 60, pp.91-–110.
[31]
Lucas B. D., Kanade T. 1981. An iterative image registration technique with an application to stereo vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence, IJCAI'81 Vol. Volume 2, pp. pp.674-–679, Vancouver, Canada. San Francisco, CA: Morgan Kaufmann Publishers Inc.
[32]
Ma R., Li L., Huang W., Tian Q. 2004. On pixel count based crowd density estimation for visual surveillance. In 2004 IEEE Conference on Cybernetics and Intelligent Systems, Singapore, Singapore. Vol. Volume 1, pp. pp.170-–173. IEEE.
[33]
Macal C. M., North M. J. 2009. Agent-based modeling and simulation. In Winter Simulation Conference WSC'09 pp. pp.86-–98. Austin, TX: Winter Simulation Conference.
[34]
MacQueen J. 1967. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability Vol. Volume 1, pp. pp.281-–297. Berkeley, Calif: University of California Press.
[35]
Mamei M., Colonna M. 2016. Estimating attendance from cellular network data. International Journal of Geographical Information Science, Volume 30, pp.1281-–1301.
[36]
Marana A. N., Costa L. D. F., Lotufo R. A., Velastin S. A. 1999. Estimating crowd density with Minkowski fractal dimension. In 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing, 1999. Proceedings, ICASSP99 Cat. No. 99CH36258 Vol. Volume 6, pp. pp.3521-–3524. Phoenix, AZ: IEEE. .
[37]
Marana A. N., Velastin S. A., Costa L. D. F., Lotufo R. A. 1998. Automatic estimation of crowd density using texture. Safety Science, Volume 28, pp.165-–175.
[38]
Mariano V., Tran L. D., Hung T. Q., Amouroux E. 2017. Person size estimation in image sequences using foreground run-length distributions. In 2017 Seventh International Conference on Information Science and Technology ICIST pp. pp.246-–250. Da Nang, Vietnam: IEEE.
[39]
Mehran R., Oyama A., Shah M. 2009. Abnormal crowd behavior detection using social force model. In IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009 pp. pp.935-–942. Miami, FL: IEEE.
[40]
Musse S. R., Jung C. R., Jacques J., Braun A. 2007. Using computer vision to simulate the motion of virtual agents. Computer Animation and Virtual Worlds, Volume 18, pp.83-–93.
[41]
Narain R., Golas A., Curtis S., Lin M. C. 2009. Aggregate dynamics for dense crowd simulation. In ACM Transactions on Graphics TOG, Proceeding SIGGRAPH Asia '09 ACM SIGGRAPH Asia Vol. Volume 28, p. pp.122. ACM., Yokohama, Japan
[42]
Otsason V., Varshavsky A., LaMarca A., De Lara E. 2005. Accurate GSM indoor localization. In Beigl M., Intille S., Rekimoto J., Tokuda H. Eds., International Conference on Ubiquitous Computing, UbiComp 2005, LNCS 3660 pp. pp.141-–158. Berlin, Germany: Springer.
[43]
Papadimitriou E., Yannis G., Golias J. 2009. A critical assessment of pedestrian behaviour models. Transportation Research Part F: Traffic Psychology and Behaviour, Volume 12, pp.242-–255.
[44]
Pelechano N., Allbeck J. M., Badler N. I. 2007. Controlling individual agents in high-density crowd simulation. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation pp. pp.99-–108. San Diego, CA: Eurographics Association.
[45]
Pelechano N., Allbeck J. M., Badler N. I. 2008. Virtual crowds: Methods, simulation, and control. Synthesis Lectures on Computer Graphics and Animation, Volume 3, pp.1-–176.
[46]
Piccardi M. 2004. Background subtraction techniques: A review. In 2004 IEEE International Conference on Systems, Man and Cybernetics, <conf-date>10-13 October 2004</conf-date> Vol. Volume 4, pp. pp.3099-–3104. The Hague, Netherlands: IEEE.
[47]
Polus A., Schofer J. L., Ushpiz A. 1983. Pedestrian flow and level of service. Journal of Transportation Engineering, Volume 109, pp.46-–56.
[48]
Qian H., Wu X., Xu Y. 2011. Intelligent surveillance systems Vol. 51. Intelligent Systems, Control and Automation: Science and Engineering. Dordrecht, the Netherland: Springer Science & Business Media.
[49]
Quercia D., Lathia N., Calabrese F., Di Lorenzo G., Crowcroft J. 2010. Recommending social events from mobile phone location data. In 2010 IEEE 10th International Conference on Data Mining ICDM pp. pp.971-–976. Sydney, Australia: IEEE.
[50]
Regazzoni C. S., Tesei A. 1996. Distributed data fusion for real-time crowding estimation. Signal Processing, Volume 53, pp.47-–63.
[51]
Robin T., Antonini G., Bierlaire M., Cruz J. 2009. Specification, estimation and validation of a pedestrian walking behavior model. Transportation Research Part B: Methodological, Volume 43, pp.36-–56.
[52]
Ryan D., Denman S., Sridharan S., Fookes C. 2015. An evaluation of crowd counting methods, features and regression models. Computer Vision and Image Understanding, Volume 130, pp.1-–17.
[53]
Šalamon T. 2011. Design of agent-based models: Developing computer simulations for a better understanding of social processes. Repin, Czech Republic: Tomáš Bruckner.
[54]
Saleh S. A. M., Suandi S. A., Ibrahim H. 2015. Recent survey on crowd density estimation and counting for visual surveillance. Engineering Applications of Artificial Intelligence, Volume 41, pp.103-–114.
[55]
Scovanner P., Ali S., Shah M. 2007. A 3-dimensional sift descriptor and its application to action recognition. In Proceedings of the 15th ACM International Conference on Multimedia pp. pp.357-–360. Augsburg, Germany: ACM.
[56]
Shapiro L., Stockman G. C. 2001. Computer vision1st ed. Upper Saddle River, NJ: Prentice Hall.
[57]
Shechtman E., Irani M. 2005. Space-time behavior based correlation. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005 Vol. Volume 1, pp. pp.405-–412. San Diego, CA, USA: IEEE.
[58]
Shi J. 1994. Good features to track. In 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1994. Proceedings CVPR'94 pp. pp.593-–600. Seattle, WA: IEEE.
[59]
Sinnott R. O., Chen W. 2016. Estimating crowd sizes through social media. In 2016 IEEE International Conference on Pervasive Computing and Communication Workshops PerCom Workshops, pp. pp.1-–6, <conf-date>14-16 March 2016</conf-date>. Sydney, NSW, Australia: IEEE.
[60]
Sjarif N. N. A., Shamsuddin S. M., Hashim S. Z. M., Yuhaniz S. S. 2011, 1. Crowd analysis and its applications. In Zain J. M., Mohd W. M. bt W., El-Qawasmeh E. Eds., International Conference on Software Engineering and Computer Systems. ICSECS 2011, Part I, CCIS 179 pp. pp.687-–697. Berlin, Germany: Springer.
[61]
Thalmann D. 2007. Crowd simulation. New York, NY: John Wiley.
[62]
Torr P. H., Szeliski R., Anandan P. 2001. An integrated Bayesian approach to layer extraction from image sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 23, pp.297-–303.
[63]
van Waart P., Mulder I., de Bont C. 2016. A participatory approach for envisioning a smart city. Social Science Computer Review, Volume 34, pp.708-–723.
[64]
Wang J. Y., Adelson E. H. 1993. Layered representation for motion analysis. In 1993 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings CVPR'93 pp. pp.361-–366, <conf-date>15-17 June 1993</conf-date>. New York, NY, USA: IEEE.
[65]
Watson R., Yip P. 2011. How many were there when it mattered?Significance, Volume 8, pp.104-–107.
[66]
Yogameena B., Nagananthini C. 2017. Computer vision based crowd disaster avoidance system: A survey. International Journal of Disaster Risk Reduction, Volume 22, pp.95-–129.
[67]
Yuan Y., Zhao J., Qiu C., Xi W. 2013. Estimating crowd density in an RF-based dynamic environment. IEEE Sensors Journal, Volume 13, pp.3837-–3845.
[68]
Zhan B., Monekosso D. N., Remagnino P., Velastin S. A., Xu L. Q. 2008. Crowd analysis: A survey. Machine Vision and Applications, Volume 19, pp.345-–357.
[69]
Zhou S., Chen D., Cai W., Luo L., Low M. Y. H., Tian F. & Hamilton B. D . 2010. Crowd modeling and simulation technologies. ACM Transactions on Modeling and Computer Simulation, Volume 20, pp.20.
[70]
Zitouni M. S., Bhaskar H., Dias J., Al-Mualla M. E. 2016. Advances and trends in visual crowd analysis: A systematic survey and evaluation of crowd modeling techniques. Neurocomputing, Volume 186, pp.139-–159.

Cited By

View all
  • (2021)Forecasting Crowd Counts With Wi-Fi Systems: Univariate, Non-Seasonal ModelsIEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2020.299210122:10(6407-6419)Online publication date: 1-Oct-2021

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

Publisher

Sage Publications, Inc.

United States

Publication History

Published: 01 October 2018

Author Tags

  1. crowd density
  2. crowd management
  3. crowd size estimation
  4. received signal strength indication

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 22 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2021)Forecasting Crowd Counts With Wi-Fi Systems: Univariate, Non-Seasonal ModelsIEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2020.299210122:10(6407-6419)Online publication date: 1-Oct-2021

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media