Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Automated algorithms for multiscale morphometry of neuronal dendrites

Published: 01 July 2004 Publication History

Abstract

We describe the synthesis of automated neuron branching morphology and spine detection algorithms to provide multiscale three-dimensional morphological analysis of neurons. The resulting software is applied to the analysis of a high-resolution (0.098 µm × 0.098 µm × 0.081 µm) image of an entire pyramidal neuron from layer III of the superior temporal cortex in rhesus macaque monkey. The approach provides a highly automated, complete morphological analysis of the entire neuron; each dendritic branch segment is characterized by several parameters, including branch order, length, and radius as a function of distance along the branch, as well as by the locations, lengths, shape classification (e.g., mushroom, stubby, thin), and density distribution of spines on the branch. Results for this automated analysis are compared to published results obtained by other computer-assisted manual means.

References

[1]
Al-Kofahi, K. A., Lasek, S., Szarowski, D. H., Pace, C. J., Nagy, G., Turner, J. N., & Roysam, B. (2002). Rapid automated three-dimensional tracing of neurons from confocal image stacks. IEEE Trans. Information Tech. Biomed., 6, 171-187.
[2]
Anderson, S. A., Classey, J. D., Condé, F., Lund, J. S., & Lewis, D. A. (1995). Synchronous development of pyramidal neuron dendritic spines and parvalbumin-immunoreactive chandelier neuron axon terminals in layer III of monkey prefrontal cortex. Neurosci., 67, 7-22.
[3]
Baer, S. M., & Rinzel, J. (1991). Propagation of dendritic spikes mediated by excitable spines: A continuum theory. J. Neurophysiol, 65, 874-890.
[4]
Bartesaghi, R., Severi, S., & Guidi, S. (2003). Effects of early environment on pyramidal neuron morphology in field CA1 of the guinea-pig. Neuroscience, 116, 715-732.
[5]
Bower, J. M., & Beeman, D. (1994). The book of GENESIS: Exploring realistic neural models with the GEneral NEural SImulation system. Berlin: TELOS/Springer-Verlag.
[6]
Cannon, R. C., Turner, D. A., Pyapali, G. K., & Wheal, H. V. (1998). An on-line archive of reconstructed hippocampal neurons. J. Neurosci. Methods, 84, 49-54.
[7]
Cohen, A. R., Roysam, B., & Turner, J. N. (1994). Automated tracing and volume measurements of neurons from 3-D confocal fluorescence microscopy data. J. Microsc., 171, 103-114.
[8]
DeFelipe, J., & Fariññas, I. (1992). The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristic of the synaptic inputs. Prog. Neurobiol., 39, 563-607.
[9]
DeLima, A. D., Voigt, T., & Morrison, J. H. (1990). Morphology of the cells within the inferior temporal gyrus that project to the prefrontal cortex in the macaque monkey. J. Comp. Neurol., 296, 159-172.
[10]
Duan, H., Wearne, S. L., Morrison, J. H., & Hof, P. R. (2002). Quantitative analysis of the dendritic morphology of corticocortical projection neurons in the macaque monkey association cortex. Neuroscience, 114, 349-359.
[11]
Duan, H., Wearne, S. L., Rocher, A. B., Macedo, A., Morrison, J. H., & Hof, P. R. (2003). Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cereb. Cortex, 13, 950-961.
[12]
Elston, G. N. (2000). Pyramidal cells of the frontal lobe: All the more spinous to think with. J. Neurosci., 20, RC95.
[13]
Elston, G. N., & Rockland, K. S. (2002). The pyramidal cell of the sensorimotor cortex of the macaque monkey: Phenotypic variation. Cereb. Cortex, 12, 1071-1078.
[14]
Elston, G. N., & Rosa, M. G. (1997). The occipitoparietal pathway of the macaque monkey: Comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. Cereb. Cortex, 7, 432-452.
[15]
Elston, G. N., & Rosa, M. G. (1998). Morphological variation of layer III pyramidal neurones in the occipitotemporal pathway of the macaque monkey visual cortex. Cereb. Cortex, 8, 278-294.
[16]
Elston, G. N., Tweedale, R., & Rosa, M. G. (1999a). Cellular heterogeneity in cerebral cortex: A study of the morphology of pyramidal neurones in visual areas of the marmoset monkey. J. Comp. Neurol., 415, 33-51.
[17]
Elston, G. N., Tweedale, R., & Rosa, M. G. (1999b). Cortical integration in the visual system of the macaque monkey: Large-scale morphological differences in the pyramidal neurons in the occipital, parietal and temporal lobes. Proc. R. Soc. Lond. Ser. B, 266, 1367-1374.
[18]
Elston, G. N., Tweedale, R., & Rosa, M. G. (1999c). Supragranular pyramidal neurones in the medial posterior parietal cortex of the macaque monkey: Morphological heterogeneity in subdivisions of area 7. NeuroReport, 10, 1925-1929.
[19]
Feldman, M. L. (1984). Morphology of the neocortical pyramidal neuron. In E. G. Jones & A. Peters (Eds.), Cerebral cortex (Vol. 1, pp. 123-200). New York: Plenum Press.
[20]
Feldman, M. L., & Peters, A. (1979). Technique for estimating total spine numbers on Golgi-impregnated dendrites. J. Comp. Neurol., 118, 527-542.
[21]
Ford-Holevinski, T., Dahlberg, T. A., & Agranoff, B. W. (1986). A microcomputer-based image analyzer for quantifying neurite outgrowth. Brain Res., 368, 339-346.
[22]
Gilbert, C. D., & Wiesel, T. N. (1992). Receptive-field dynamics in adult primary visual-cortex. Nature, 356, 150-152.
[23]
Glantz, L. A., & Lewis, D. A. (2000). Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch. Gen. Psychiatry, 57, 65-73.
[24]
Goddard, N. H., Beeman, D., Cannon, R., Cornelis, H., Gewaltig, M. O., Hood, G., Howell, F., Rogister, P., De Schutter, E., Shankar, K., & Hucka, M. (2002). NeuroML for plug and play neuronal modeling. Neurocomputation, 44, 1077-1081.
[25]
Goddard, N. H., Hucka, M., Howell, F., Cornelis, H., Shankar, K., & Beeman, D. (2001). Towards NeuroML: Model description methods for collaborative modelling in neuroscience. Philos. Trans. R. Soc. B, 356, 1209-1228.
[26]
Harris, K. M., Jensen, F. E., & Tsao, B. (1992). Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: Implications for the maturation of synaptic physiology and long-term potentiation. J. Neurosci., 12, 2685-2705.
[27]
Harris, K. M., & Stevens, J. K. (1988). Dendritic spines of rat cerebellar Purkinje cells: Serial electron microscopy with reference to their biophysical characteristics. J. Neurosci., 8, 4455-4469.
[28]
Herzog, A., Krell, G., Michaelis, B., Wang, J., Zuschratter, W., & Braun, K. (1997). Restoration of three-dimensional quasi-binary images from confocal microscopy and its application to dendritic trees. In C. J. Cogswell, J. Conchello, & T. Wilson (Eds.), Three-dimensional microscopy: Image acquisition and processing IV, Proceedings of SPIE. Bellingham, WA: SPIE.
[29]
Hines, M. L. (1994). The neuron simulation program. In J. Skrzypek (Ed.), Neural network simulation environments (pp. 147-163). Norwell, MA: Kluwer.
[30]
Holmes, W. R. (1989). The role of dendritic diameter in maximizing the effectiveness of synaptic inputs. Brain Res., 478, 127-137.
[31]
Hubener, M., Schwarz, C., & Bolz, J. (1990). Morphological types of projection neurons in layer 5 of cat visual cortex. J. Comp. Neurol., 301, 655-674.
[32]
Irwin, S. A., Idupulapati, M., Gilbert, M. E., Harris, J. B., Chakravarti, A. B., Rogers, E. J., Crisostomo, R. A., Larsen, B. P., Mehta, A., Alcantara, C. J., Patel, B., Swain, R. A., Weiler, I. J., Oostra, B. A., & Greenough, W. T. (2002). Dendritic spine and dendritic field characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice. Am. J. Med. Genet., 111, 140-146.
[33]
Irwin, S. A., Idupulapati, M., Harris, J. B., Crisostomo, R. A., Larsen, B. P., Kooy, F., Willems, P. J., Cras, P., Kozlowski, P. B., Swain, R. A., Weiler, I. J., & Greenough, W. T. (2001). Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: A quantitative examination. Am. J. Med. Genet., 98, 161-167.
[34]
Jacobs, B., Driscoll, L., & Schall, M. (1997). Life-span dendritic and spine changes in areas 10 and 18 of human cortex: A quantitative Golgi study. J. Comp. Neurol., 386, 661-680.
[35]
Jacobs, B., Schall, M., Prather, M., Kapler, E., Driscoll, L., Baca, S., Jacobs, J., Ford, K., Wainwright, M., & Treml, M. (2001). Regional dendritic and spine variation in human cerebral cortex: A quantitative Golgi study. Cereb. Cortex, 11, 558-571.
[36]
Koh, Y. Y. (2001). Automated recognition algorithms for neural studies. Unpublished doctoral dissertation, Stony Brook University.
[37]
Koh, I. Y. Y., Lindquist, W. B., Zito, K., Nimchinsky, E. A., & Svoboda, K. (2002). An image analysis algorithm for dendritic spines. Neural Comput., 14, 1283-1310.
[38]
Kolb, B., Gibb, R., & Gorny, G. (2003). Experience-dependent changes in dendritic arbor and spine density in neocortex vary qualitatively with age and sex. Neurobiol. Learn. Mem., 79, 1-10.
[39]
Krichmar, J. L., Nasuto, S. J., Scorcioni, R., Washington, S. D., & Ascoli, G. A. (2002). Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: A simulation study. Brain Res., 941, 11-28.
[40]
Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382, 363-366.
[41]
Maravall, M., Shepherd, G. M. G., Koh, I. Y. Y., Lindquist, W. B., & Svoboda, K. (in press). Experience-dependent changes in dendritic morphology of layer 2/3 pyramidal neurons during a critical period for developmental plasticity in rat barrel cortex. Cerebral Cortex.
[42]
Nimchinsky, E. A., Hof, P. R., Young, W. G., & Morrison, J. H. (1996). Neurochemical, morphologic, and laminar characterization of cortical projection neurons in the cingulated motor areas of the macaque monkey. J. Comp. Neurol., 374, 136-160.
[43]
Nimchinsky, E. A., Oberlander, A. M., & Svoboda, K. (2001). Abnormal development of dendritic spines in FMR1 knock-out mice. J. Neurosci., 21, 5139-5146.
[44]
Nimchinsky, E. A., Sabatini, B. L., & Svoboda, K. (2002). Structure and function of dendritic spines. Annu. Rev. Physiol., 64, 313-352.
[45]
Oh, W. & Lindquist, W. B. (1999). Image thresholding by indicator kriging. IEEE Trans. Pattern Anal. Mach. Intell., 21, 590-602.
[46]
Page, T. L., Einstein, M., Duan, H., He, Y., Flores, T., Rolshud, D., Erwin, J. M., Wearne, S. L., Morrison, J. H., & Hof, P. R. (2002). Morphological alterations in neurons forming corticocortical projections in the neocortex of aged Patas monkeys. Neurosci. Lett., 317, 37-41.
[47]
Purpura, D. P. (1974). Dendritic spine dysgenesis and mental-retardation. Science, 186, 1126-1128.
[48]
Ramón y Cajal, S. (1893). Neue Darstellung vom histologischen Bau des Centralnervensystems. Arch. Anat. Entwickl. {Anatomisches Abteilung des Archiv für Anatomie und Physiologie}, 319-428.
[49]
Rodriguez, A., Ehlenberger, D., Kelliher, K., Einstein, M., Henderson, S. C., Morrison, J. H., Hof, P. R., & Wearne, S. L. (2003). Automated reconstruction of three-dimensional neuronal morphology from laser scanning microscopy images. Methods, 30, 94-105.
[50]
Rumberger, A., Schmidt, M., Lohmann, H., & Hoffmann, K. P. (1998). Correlation of electrophysiology, morphology, and functions in corticotectal and corticopretectal projection neurons in rat visual cortex. Exp. Brain Res., 119, 375-390.
[51]
Rusakov, D. A., & Stewart, M. G. (1995). Quantification of dendritic spine populations using image analysis and a tilting disector. J. Neurosci. Methods, 60, 11-21.
[52]
Scheibel, A. B., Conrad, T., Perdue, S., Tomiyasu, U., & Wechsler, A. (1990). A quantitative study of dendrite complexity in selected areas of the human cerebral cortex. Brain Cogn., 12, 85-101.
[53]
Scheibel, A. B., Paul, L. A., Fried, I., Forsythe, A. B., Tomiyasu, U., Wechsler, A., Kao, A., & Slotnick, J. (1985). Dendritic organization of the anterior speech area. Exp. Neurol., 87, 109-117.
[54]
Seib, L. M., & Wellman, C. L. (2003). Daily injections alter spine density in rat medial prefrontal cortex. Neurosci. Lett., 337, 29-32.
[55]
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples), Biometrika, 52(3-4), 591-611.
[56]
Sholl, D. A. (1953). Dendritic organization in the neurons of the visual and motor cortices of the cat. J. Anat., 87, 387-406.
[57]
Soloway, A. S., Pucak, M. L., Melchitzky, D. S., & Lewis, D. A. (2002). Dendritic morphology of callosal and ipsilateral projection neurons in monkey prefrontal cortex. Neuroscience, 109, 461-471.
[58]
Stratford, K., Mason, A., Larkman, A., Major, G., & Jack, J. (1989). The modeling of pyramidal neurons in the visual cortex. In R. Durbin, C. Miall, & G. Mitchison (Eds.), The computing neuron (pp. 296-321). Reading, MA: Addison-Wesley.
[59]
Surkis, A., Peskin, C. S., Tranchina, D., & Leonard, C. S. (1998). Recovery of cable properties through active and passive modeling of subthreshold membrane responses from laterodorsal tegmental neurons. J. Neurophysiol., 80, 2593-2607.
[60]
Tanzi, E. (1893). I fatti i le induzioni nell'odierna istologia del sistema nervoso. Riv. Sper. Preniatr. Med. Leg. Alien. Ment., 19, 419-422.
[61]
Turner, J. N., Ancin, H., Becker, D. E., Szarowski, D. H., Holmes, M., O'Connor, N., Wang, M., Holmes, T., & Roysam, B. (1997). Automated image analysis technologies for biological 3D light microscopy. Int. J. Imag. Syst. Tech., 8, 240-254.
[62]
Turner, J. N., Shain, W., Szarowski, D. H., Lasek, S., Dowell, N., Sipple, B., Can, A., Al-Kofahi, K., & Roysam, B. (2000). Three-dimensional light microscopy: Observation of thick objects. J. Histotechnol., 23, 205-217.
[63]
Uylings, H. B. M., Ruiz-Marcos, A., & van Pelt, J. (1986). The metric analysis of three-dimensional dendritic tree patterns: A methodological review. J. Neurosci. Methods, 18, 127-151.
[64]
Wallace, C., Hawrylak, N., & Greenough, W. T. (1991). Studies of synaptic structural modifications after long-term potentiation and kindling: Context for a molecular morphology. In M. Baudry & J. L. Davis (Eds.), Long-term potentiation: A debate of current issues (pp. 189-332). Cambridge, MA: MIT Press.
[65]
Watzel, R., Braun, K., Hess, A., Scheich, H., & Zuschratter, W. (1995). Detection of dendritic spines in 3-dimensional images. Bielefeld: Springer-Verlag.
[66]
Weaver, C. M. (2003). Automated morphology of neural cells. Unpublished doctoral dissertation, Stony Brook University.
[67]
Weaver, C. M., & Lindquist, W. B. (2003). 3DMA-neuron users manual. Available on-line at: http://www.ams.sunysb.edu/~lindquis/3dma_neuron/ 3dma_neuron.html.
[68]
Weaver, C. M., Pinezich, J. D., Lindquist, W. B., & Vazquez, M. E. (2003). An algorithm for neurite outgrowth reconstruction. J. Neurosci. Methods, 124, 197-205.
[69]
Wilson, C. J. (1984). Passive cable properties of dendritic spines and spiny neurons. J. Neurosci., 4, 281-297.
[70]
Wilson, C. J. (1988). Cellular mechanisms controlling the strength of synapses. J. Electron Microsc. Tech., 10, 293-313.
[71]
Wilson, C. J., Groves, P. M., Kitai, S. T., & Linder, J. C. (1983). Three-dimensional structure of dendritic spines in the rat neostriatum. J. Neurosci., 3, 383-398.

Cited By

View all
  • (2010)Stitching of microscopic images for quantifying neuronal growth and spine plasticityProceedings of the 6th international conference on Advances in visual computing - Volume Part I10.5555/1939921.1939927(45-53)Online publication date: 29-Nov-2010
  • (2010)Stitching of Microscopic Images for Quantifying Neuronal Growth and Spine PlasticityAdvances in Visual Computing10.1007/978-3-642-17289-2_5(45-53)Online publication date: 29-Nov-2010
  • (2007)Development of Invertebrate Brain Platform: Management of Research Resources for Invertebrate Neuroscience and NeuroethologyNeural Information Processing10.1007/978-3-540-69162-4_94(905-914)Online publication date: 13-Nov-2007

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Neural Computation
Neural Computation  Volume 16, Issue 7
July 2004
215 pages

Publisher

MIT Press

Cambridge, MA, United States

Publication History

Published: 01 July 2004

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2010)Stitching of microscopic images for quantifying neuronal growth and spine plasticityProceedings of the 6th international conference on Advances in visual computing - Volume Part I10.5555/1939921.1939927(45-53)Online publication date: 29-Nov-2010
  • (2010)Stitching of Microscopic Images for Quantifying Neuronal Growth and Spine PlasticityAdvances in Visual Computing10.1007/978-3-642-17289-2_5(45-53)Online publication date: 29-Nov-2010
  • (2007)Development of Invertebrate Brain Platform: Management of Research Resources for Invertebrate Neuroscience and NeuroethologyNeural Information Processing10.1007/978-3-540-69162-4_94(905-914)Online publication date: 13-Nov-2007

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media