Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Shape quantization and recognition with randomized trees

Published: 01 October 1997 Publication History

Abstract

No abstract available.

References

[1]
Baum, E. B., & Haussler, D. (1989). What size net gives valid generalization? Neural Comp., 1, 151-160.
[2]
Binford, T. O., & Levitt, T. S. (1993). Quasi-invariants: Theory and exploitation. In Proceedings of the Image Understanding Workshop (pp. 819-828). Washington D.C.
[3]
Bottou, L., Cortes, C., Denker, J. S., Drucker, H., Guyon, I., Jackel, L. D., LeCun, Y., Muller, U. A., Sackinger, E., Simard, P., & Vapnik, V. (1994). Comparison of classifier methods: A case study in handwritten digit recognition. Proc. 12th Inter. Conf. on Pattern Recognition (Vol. 2, pp. 77-82). Los Alamitos, CA: IEEE Computer Society Press.
[4]
Breiman, L. (1994). Bagging predictors (Tech. Rep. No. 451). Berkeley: Department of Statistics, University of California, Berkeley.
[5]
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. Belmont, CA: Wadsworth.
[6]
Brown, D., Corruble, V., & Pittard, C. L. (1993). A comparison of decision tree classifiers with backpropagation neural networks for multimodal classification problems. Pattern Recognition, 26, 953-961.
[7]
Burns, J. B., Weiss, R. S., & Riseman, E. M. (1993). View variation of point set and line segment features. IEEE Trans. PAMI, 15, 51-68.
[8]
Casey, R. G., & Jih, C. R. (1983). A processor-based OCR system. IBM Journal of Research and Development, 27, 386-399.
[9]
Casey, R. G., & Nagy, G. (1984). Decision tree design using a probabilistic model. IEEE Trans. Information Theory, 30, 93-99.
[10]
Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. New York: Wiley.
[11]
Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass learning problems via error-correcting output codes. J. Artificial Intell. Res., 2, 263-286.
[12]
Forsyth, D., Mundy, J. L., Zisserman, A., Coelho, C., Heller, A., & Rothwell, C. (1991). Invariant descriptors for 3-D object recognition and pose. IEEE Trans. PAMI, 13, 971-991.
[13]
Friedman, J. H. (1973). A recursive partitioning decision rule for nonparametric classification. IEEE Trans. Comput., 26, 404-408.
[14]
Fukushima, K., & Miyake, S. (1982). Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern Recognition, 15, 455-469.
[15]
Fukushima, K., & Wake, N. (1991). Handwritten alphanumeric character recognition by the neocognitron. IEEE Trans. Neural Networks, 2, 355-365.
[16]
Gelfand, S. B., & Delp, E. J. (1991). On tree structured classifiers. In I. K. Sethi & A. K. Jain (Eds.), Artificial neural networks and statistical pattern recognition (pp. 51-70). Amsterdam: North-Holland.
[17]
Geman, D., Amit, Y., & Wilder, K. (1996). Joint induction of shape features and tree classifiers (Tech. Rep.). Amherst: University of Massachusetts.
[18]
Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance dilemma. Neural Computation, 4, 1-58.
[19]
Gilbert, C. D., Das, A., Ito, M., Kapadia, M., & Westheimer, G. (1996). Spatial integration and cortical dynamics. Proc. Natl. Acad. Sci., 93, 615-622.
[20]
Gochin, P. M. (1994). Properties of simulated neurons from a model of primate inferior temporal cortex. Cerebral Cortex, 5, 532-543.
[21]
Guo, H., & Gelfand, S. B. (1992). Classification trees with neural network feature extraction. IEEE Trans. Neural Networks, 3, 923-933.
[22]
Hastie, T., Buja, A., & Tibshirani, R. (1995). Penalized discriminant analysis. Annals of Statistics, 23, 73-103.
[23]
Hussain, B., & Kabuka, M. R. (1994). A novel feature recognition neural network and its application to character recognition. IEEE Trans. PAMI, 16, 99-106.
[24]
Ito, M., Fujita, I., Tamura, H., Tanaka, K. (1994). Processing of contrast polarity of visual images of inferotemporal cortex of Macaque monkey. Cerebral Cortex, 5, 499-508.
[25]
Ito, M., Tamura, H., Fujita, I., & Tanaka, K. (1995). Size and position invariance of neuronal response in monkey inferotemporal cortex. J. Neuroscience, 73(1), 218-226.
[26]
Jedynak, B., Fleuret, F. (1996). Reconnaissance d'objets 3D à l'aide d'arbres de classification. In Proc. Image Com 96. Bordeaux, France.
[27]
Jung, D.-M., & Nagy, G. (1995). Joint feature and classifier design for OCR. In Proc. 3rd Inter. Conf. Document Analysis and Processing (Vol. 2, pp. 1115-1118). Montreal. Los Alamitos, CA: IEEE Computer Society Press.
[28]
Khotanzad, A., & Lu, J.-H. (1991). Shape and texture recognition by a neural network. In I. K. Sethi & A. K. Jain (Eds.), Artificial Neural Networks and Statistical Pattern Recognition. Amsterdam: North-Holland.
[29]
Knerr, S., Personnaz, L., & Dreyfus, G. (1992). Handwritten digit recognition by neural networks with single-layer training. IEEE Trans. Neural Networks, 3, 962-968.
[30]
Kong, E. B., & Dietterich, T. G. (1995). Error-correcting output coding corrects bias and variance. In Proc. of the 12th International Conference on Machine Learning (pp. 313-321). San Mateo, CA: Morgan Kaufmann.
[31]
Lamdan, Y., Schwartz, J. T., & Wolfson, H. J. (1988). Object recognition by affine invariant matching. In IEEE Int. Conf. Computer Vision and Pattern Rec. (pp. 335-344). Los Alamitos, CA: IEEE Computer Society Press.
[32]
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1990). Handwritten digit recognition with a back-propagation network. In D. S. Touretzky (Ed.), Advances in Neural Information (Vol. 2). San Mateo, CA: Morgan Kaufmann.
[33]
Lee, D.-S., Srihari, S. N., & Gaborski, R. (1991). Bayesian and neural network pattern recognition: A theoretical connection and empirical results with handwritten characters. In I. K. Sethi & A. K. Jain (Eds.), Artificial Neural Networks and Statistical Pattern Recognition. Amsterdam: North-Holland.
[34]
Martin, G. L., & Pitman, J. A. (1991). Recognizing hand-printed letters and digits using backpropagation learning. Neural Computation, 3, 258-267.
[35]
Mori, S., Suen, C. Y., & Yamamoto, K. (1992). Historical review of OCR research and development. In Proc. IEEE (Vol. 80, pp. 1029-1057). New York: IEEE.
[36]
Mundy, J. L., & Zisserman, A. (1992). Geometric invariance in computer vision. Cambridge, MA: MIT Press.
[37]
Neuenschwander, S., & Singer, W. (1996). Long-range synchronization of oscillatory light responses in cat retina and lateral geniculate nucleus. Nature, 379(22), 728-733.
[38]
Niyogi, P., & Girosi, F. (1996). On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions. Neural Comp., 8, 819-842.
[39]
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.
[40]
Raudys, S., & Jain, A. K. (1991). Small sample size problems in designing artificial neural networks. In I. K. Sethi & A. K. Jain (Eds.), Artificial Neural Networks and Statistical Pattern Recognition. Amsterdam: North-Holland.
[41]
Reiss, T. H. (1993). Recognizing planar objects using invariant image features. Lecture Notes in Computer Science no. 676. Berlin: Springer-Verlag.
[42]
Sabourin, M., & Mitiche, A. (1992). Optical character recognition by a neural network. Neural Networks, 5, 843-852.
[43]
Sethi, I. K. (1991). Decision tree performance enhancement using an artificial neural network implementation. In I. K. Sethi & A. K. Jain (Eds.), Artificial Neural Networks and Statistical Pattern Recognition. Amsterdam: North-Holland.
[44]
Shlien, S. (1990). Multiple binary decision tree classifiers. Pattern Recognition, 23, 757-763.
[45]
Simard, P. Y., LeCun, Y. L., & Denker, J. S. (1994). Memory-based character recognition using a transformation invariant metric. In Proc. 12th Inter. Conf. on Pattern Recognition (Vol. 2, pp. 262-267). Los Alamitos, CA: IEEE Computer Society Press.
[46]
Werbos, P. (1991). Links between artificial neural networks (ANN) and statistical pattern recognition. In I. K. Sethi & A. K. Jain (Eds.), Artificial Neural Networks and Statistical Pattern Recognition. Amsterdam: North-Holland.
[47]
Wilkinson, R. A., Geist, J., Janet, S., Grother, P., Gurges, C., Creecy, R., Hammond, B., Hull, J., Larsen, N., Vogl, T., & and Wilson, C. (1992). The first census optical character recognition system conference (Tech. Rep. No. NISTIR 4912). Gaithersburg, MD: National Institute of Standards and Technology.

Cited By

View all
  • (2024)Device-Free Indoor WLAN Localization With Distributed Antenna Placement Optimization and Spatially Localized RegressionIEEE Transactions on Wireless Communications10.1109/TWC.2024.336712123:8_Part_2(9869-9883)Online publication date: 1-Aug-2024
  • (2024)Lost in the Forest: Encoding categorical variables and the absent levels problemData Mining and Knowledge Discovery10.1007/s10618-024-01019-w38:4(1889-1908)Online publication date: 1-Jul-2024
  • (2024)Predictive machine learning approaches for perovskites properties using their chemical formula: towards the discovery of stable solar cells materialsNeural Computing and Applications10.1007/s00521-024-09992-536:26(16319-16329)Online publication date: 1-Sep-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Neural Computation
Neural Computation  Volume 9, Issue 7
Oct. 1, 1997
217 pages
ISSN:0899-7667
Issue’s Table of Contents

Publisher

MIT Press

Cambridge, MA, United States

Publication History

Published: 01 October 1997

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Device-Free Indoor WLAN Localization With Distributed Antenna Placement Optimization and Spatially Localized RegressionIEEE Transactions on Wireless Communications10.1109/TWC.2024.336712123:8_Part_2(9869-9883)Online publication date: 1-Aug-2024
  • (2024)Lost in the Forest: Encoding categorical variables and the absent levels problemData Mining and Knowledge Discovery10.1007/s10618-024-01019-w38:4(1889-1908)Online publication date: 1-Jul-2024
  • (2024)Predictive machine learning approaches for perovskites properties using their chemical formula: towards the discovery of stable solar cells materialsNeural Computing and Applications10.1007/s00521-024-09992-536:26(16319-16329)Online publication date: 1-Sep-2024
  • (2023)Learning curves for noisy heterogeneous feature-subsampled ridge ensemblesProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3668299(50041-50093)Online publication date: 10-Dec-2023
  • (2023)BoostTree and BoostForest for Ensemble LearningIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2022.322737045:7(8110-8126)Online publication date: 1-Jul-2023
  • (2023)Interpretable by Design: Learning Predictors by Composing Interpretable QueriesIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2022.322516245:6(7430-7443)Online publication date: 1-Jun-2023
  • (2023)Security Testing of Android Apps Using Malware Analysis and XGboost Optimized by Adaptive Particle Swarm OptimizationSN Computer Science10.1007/s42979-023-02411-x5:1Online publication date: 8-Dec-2023
  • (2023)A texture-based method for predicting molecular markers and survival outcome in lower grade gliomaApplied Intelligence10.1007/s10489-023-04844-653:21(24724-24738)Online publication date: 28-Jul-2023
  • (2022)Batch Bayesian optimisation via density-ratio estimation with guaranteesProceedings of the 36th International Conference on Neural Information Processing Systems10.5555/3600270.3602432(29816-29829)Online publication date: 28-Nov-2022
  • (2022)Predicting and Preventing CrimeComplexity10.1155/2022/48304112022Online publication date: 1-Jan-2022
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media