Nothing Special   »   [go: up one dir, main page]

skip to main content
article

The effects of recombination on phenotypic exploration and robustness in evolution

Published: 01 October 2014 Publication History

Abstract

Recombination is a commonly used genetic operator in artificial and computational evolutionary systems. It has been empirically shown to be essential for evolutionary processes. However, little has been done to analyze the effects of recombination on quantitative genotypic and phenotypic properties. The majority of studies only consider mutation, mainly due to the more serious consequences of recombination in reorganizing entire genomes. Here we adopt methods from evolutionary biology to analyze a simple, yet representative, genetic programming method, linear genetic programming. We demonstrate that recombination has less disruptive effects on phenotype than mutation, that it accelerates novel phenotypic exploration, and that it particularly promotes robust phenotypes and evolves genotypic robustness and synergistic epistasis. Our results corroborate an explanation for the prevalence of recombination in complex living organisms, and helps elucidate a better understanding of the evolutionary mechanisms involved in the design of complex artificial evolutionary systems and intelligent algorithms.

References

[1]
Azevedo, R. B., Lohaus, R., Srinivasan, S., Dang, K. K., & Burch, C. L. (2006). Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature, 440(2), 87-90.
[2]
Banzhaf, W., & Langdon, W. B. (2002). Some considerations on the reason for bloat. Genetic Programming and Evolvable Machines, 3(1), 81-91.
[3]
Birky, C. W., Jr. (1996). Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes. Genetics, 144, 427-437.
[4]
Brameier, M. F., & Banzhaf, W. (2007). Linear genetic programming. New York: Springer.
[5]
Burch, C. L., & Chao, L. (2004). Epistasis and its relationship to canalization in the RNA virus ¿6. Genetics, 167, 559-567.
[6]
Cordell, H. J. (2002). Epistasis: What it means, what it doesn't mean, and statistical methods to detect it in humans. Human Molecular Genetics, 11(20), 2463-2468.
[7]
Cowperthwaite, M. C., Economo, E. P., Harcombe, W. R., Miller, E. L., & Meyers, L. A. (2008). The ascent of the abundant: How mutational networks constrain evolution. PLoS Computational Biology, 4(7), e1000110.
[8]
de Visser, J. A. G. M., & Elena, S. F. (2007). The evolution of sex: Empirical insights into the roles of epistasis and drift. Nature Review Genetics, 8, 139-149.
[9]
de Visser, J. A. G. M., Hermission, J., Wagner, G. P., Meyers, L. A., Bagheri-Chaichian, H., et al. (2003). Evolution and detection of genetic robustness. Evolution, 57(9), 1959-1972.
[10]
de Visser, J. A. G. M., Hoekstra, R. F., & van den Ende, H. (1997). Test of interaction between genetic markers that affect fitness in Aspergillus niger. Evolution, 51(5), 1499-1505.
[11]
Draghi, J. A., Parsons, T. L., Wagner, G. P., & Plotkin, J. B. (2010). Mutational robustness can facilitate adaptation. Nature, 463, 353-355.
[12]
Drummond, D. A., Silberg, J. J., Meyer, M. M., Wilke, C. O., & Arnold, F. H. (2005). On the conservative nature of intragenic recombination. Proceedings of the National Academy of Sciences of the U.S.A., 102(15), 5380-5385.
[13]
Elena, S. F., & Lenski, R. E. (1997). Test of synergistic interactions among deleterious mutations in bacteria. Nature, 390, 395-398.
[14]
Fisher, R. A. (1930). The genetical theory of natural selection. Oxford, UK: Clarendon Press.
[15]
Francone, F. D., Conrads, M., Banzhaf, W., & Nordin, P. (1999). Homologous crossover in genetic programming. In W. Banzhaf, J. M. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. J. Jakiela, & R. E. Smith (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (pp. 1021-1026).
[16]
Gardner, A., & Kalinka, A. T. (2006). Recombination and the evolution of mutational robustness. Journal of Theoretical Biology, 241, 707-715.
[17]
Hansen, J. V. (2003). Genetic programming experiments with standard and homologous crossover methods. Genetic Programming and Evolvable Machines, 4, 53-66.
[18]
Holland, J. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michigan Press.
[19]
Hu, T., & Banzhaf, W. (2009). Neutrality and variability: Two sides of evolvability in linear genetic programming. In F. Rothlauf (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (pp. 963-970).
[20]
Hu, T., & Banzhaf, W. (2010). Evolvability and speed of evolutionary algorithms in light of recent developments in biology. Journal of Artificial Evolution and Applications, 2010, 568375.
[21]
Hu, T., Payne, J. L., Banzhaf, W., & Moore, J. H. (2012). Evolutionary dynamics on multiple scales: A quantitative analysis of the interplay between genotype, phenotype, and fitness in linear genetic programming. Genetic Programming and Evolvable Machines, 13, 305-337.
[22]
Jansen, T., & Wegener, I. (1999). On the analysis of evolutionary algorithms--a proof that crossover really can help. In Proceedings of the 7th Annual European Symposium on Algorithms (pp. 184-193). Springer.
[23]
Kauffman, S. A. (2000). Investigations. New York: Oxford University Press.
[24]
Kondrashov, A. S. (1998). Deleterious mutations and the evolution of sexual reproduction. Nature, 336, 435-440.
[25]
Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection. Cambridge, MA: MIT Press.
[26]
Landry, C. R., Lemos, B., Rifkin, S. A., Dickinson, W. J., & Hartl, D. L. (2007). Genetic properties influencing the evolvability of gene expression. Science, 317, 118-121.
[27]
Lenski, R. E., Ofria, C., Collier, T. C., & Adami, C. (1999). Genome complexity, robustness and genetic interactions in digital organisms. Nature, 400, 661-664.
[28]
Lohaus, R., Burch, C. L., & Azevedo, R. B. (2010). Genetic architecture and the evolution of sex. Journal of Heredity, 101, S142-S157.
[29]
MacCarthy, T., & Bergman, A. (2007). Coevolution of robustness, epistasis, and recombination favors a sexual reproduction. Proceedings of the National Academy of Sciences of the U.S.A., 104(31), 12801-12806.
[30]
Martin, O. C., & Wagner, A. (2009). Effects of recombination on complex regulatory circuits. Genetics, 183, 673-684.
[31]
Masel, J., & Siegal, M. L. (2009). Robustness: Mechanisms and consequences. Trends in Genetics, 25(9), 395-403.
[32]
McBride, R. C., Ogbunugafor, C. B., & Turner, P. E. (2008). Robustness promotes evolvability of thermotolerance in an RNA virus. BMC Evolutionary Biology, 8, 231.
[33]
Misevic, D., Ofria, C., & Lenski, R. E. (2006). Sexual reproduction reshapes the genetic architecture of digital organisms. Proceedings of The Royal Society B, 273(1585), 457-464.
[34]
Moore, J. H. (2005). A global view of epistasis. Nature Genetics, 37(1), 13-14.
[35]
Moore, J. H., & Williams, S. M. (2005). Traversing the conceptual divide between biological and statistical epistasis: Systems biology and a more modern synthesis. BioEssays, 27(6), 637-646.
[36]
Muller, H. J. (1932). Some genetic aspects of sex. The American Naturalist, 66, 118-138.
[37]
Otto, S. P., & Feldman, M. W. (1997). Deleterious mutations, variable epistatic interactions, and the evolution of recombination. Theoretical Population Biology, 51, 134-147.
[38]
Otto, S. P., & Lenormand, T. (2002). Resolving the paradox of sex and recombination. Nature Review Genetics, 3, 252-261.
[39]
Phillips, P. C. (1998). The language of gene interaction. Genetics, 149, 1167-1171.
[40]
Phillips, P. C. (2008). Epistasis--The essential role of gene interactions in the structure and evolution of genetic systems. Nature Review Genetics, 9, 855-867.
[41]
Platel, M. D., Clergue, M., & Collard, P. (2003). Maximum homologous crossover for linear genetic programming. In C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli, & E. Costa (Eds.), Proceedings of the European Conference on Genetic Programming (pp. 194-203).
[42]
Poli, R., & Langdon, W. B. (1997). Genetic programming with one-point crossover and point mutation. In Soft Computing in Engineering Design and Manufacturing (pp. 180-189). Springer-Verlag.
[43]
Siegal, M. L., & Bergman, A. (2002). Waddington's canalization revisited: Developmental stability and evolution. Proceedings of the National Academy of Sciences of the U.S.A., 99(16), 10528-10532.
[44]
Soule, T., & Heckendorn, R. B. (2002). An analysis of the causes of code growth in genetic programming. Genetic Programming and Evolvable Machines, 3, 283-309.
[45]
Spears, W. M. (1995). Adapting crossover in evolutionary algorithms. In Proceedings of the Fourth Annual Conference on Evolutionary Programming (pp. 367-384).
[46]
Szollosi, G. J., & Derenyi, I. (2008). The effect of recombination on the neutral evolution of genetic robustness. Mathematical Biosciences, 214, 58-62.
[47]
Templeton, A. R. (2000). Epistasis and complex traits. In J. B. Wolf, E. D. Brodie, & M. J. Wade (Eds.), Epistasis and the evolutionary process (pp. 41-57). New York: Oxford University Press.
[48]
Wagner, A. (2000). Robustness against mutations in genetic networks of yeast. Nature Genetics, 24, 355-361.
[49]
Wagner, A. (2007). Robustness and evolvability in living systems. Princeton, NJ: Princeton University Press.
[50]
Wagner, A. (2008). Neutralism and selectionism: A network-based reconciliation. Nature Review Genetics, 9, 965-974.
[51]
Wagner, A. (2008). Robustness and evolvability: A paradox resolved. Proceedings of The Royal Society B, 275(1630), 91-100.
[52]
Wagner, A. (2011). The low cost of recombination in creating novel phenotypes. BioEssays, 33(8), 636-646.
[53]
Wilke, C. O. (2001). Adaptive evolution on neutral networks. Bulletin of Mathematical Biology, 63, 715-730.
[54]
Wilke, C. O., & Adami, C. (2001). Interaction between directional epistasis and average mutational effects. Proceedings of the Royal Society B, 268(1475), 1469-1474.
[55]
Xia, Y., & Levitt, M. (2002). Roles of mutation and recombination in the evolution of protein thermodynamics. Proceedings of the National Academy of Sciences of the U.S.A., 99(16), 10382-10387.

Cited By

View all
  • (2022)Regulatory genotype-to-phenotype mappings improve evolvability in genetic programmingProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3520304.3529043(623-626)Online publication date: 9-Jul-2022
  • (2020)A network perspective on genotype–phenotype mapping in genetic programmingGenetic Programming and Evolvable Machines10.1007/s10710-020-09379-021:3(375-397)Online publication date: 1-Sep-2020
  • (2019)Mutational Robustness and Structural Complexity in Grammatical Evolution2019 IEEE Congress on Evolutionary Computation (CEC)10.1109/CEC.2019.8790010(1338-1344)Online publication date: 10-Jun-2019
  • Show More Cited By
  1. The effects of recombination on phenotypic exploration and robustness in evolution

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Artificial Life
      Artificial Life  Volume 20, Issue 4
      Fall 2014
      123 pages
      ISSN:1064-5462
      EISSN:1530-9185
      Issue’s Table of Contents

      Publisher

      MIT Press

      Cambridge, MA, United States

      Publication History

      Published: 01 October 2014

      Author Tags

      1. Recombination
      2. epistasis
      3. evolvability
      4. genetic programming
      5. genotype network
      6. robustness

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 14 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2022)Regulatory genotype-to-phenotype mappings improve evolvability in genetic programmingProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3520304.3529043(623-626)Online publication date: 9-Jul-2022
      • (2020)A network perspective on genotype–phenotype mapping in genetic programmingGenetic Programming and Evolvable Machines10.1007/s10710-020-09379-021:3(375-397)Online publication date: 1-Sep-2020
      • (2019)Mutational Robustness and Structural Complexity in Grammatical Evolution2019 IEEE Congress on Evolutionary Computation (CEC)10.1109/CEC.2019.8790010(1338-1344)Online publication date: 10-Jun-2019
      • (2019)Complex Network Analysis of a Genetic Programming Phenotype NetworkGenetic Programming10.1007/978-3-030-16670-0_4(49-63)Online publication date: 24-Apr-2019
      • (2018)Measuring evolvability and accessibility using the hyperlink-induced topic search algorithmProceedings of the Genetic and Evolutionary Computation Conference10.1145/3205455.3205633(1175-1182)Online publication date: 2-Jul-2018
      • (2016)Quantitative Analysis of Evolvability using Vertex Centralities in Phenotype NetworkProceedings of the Genetic and Evolutionary Computation Conference 201610.1145/2908812.2908940(733-740)Online publication date: 20-Jul-2016

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media