Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/997817.997843acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
Article

Faster core-set constructions and data stream algorithms in fixed dimensions

Published: 08 June 2004 Publication History

Abstract

We speed up previous (1+ε)-factor approximation algorithms for a number of geometric optimization problems in fixed dimensions: diameter, width, minimum-radius enclosing cylinder, minimum-width annulus, minimum-volume bounding box, minimum-width cylindrical shell, etc. Linear time bounds were known before we further improve the dependence of the "constants" in terms of ε.We next consider the data stream model and present new (1+ε)-factor approximation algorithms that need only constant space for all of the above problems in any fixed dimension. Previously, such a result was known only for diameter.Both sets of results are obtained using the core-set framework recently proposed by Agarwal, Har-Peled, and Varadarajan.

References

[1]
P. K. Agarwal, B. Aronov, and M. Sharir. Line transversals of balls and smallest enclosing cylinders in three dimensions. Discrete Comput. Geom. 21:373--388, 1999.
[2]
P. K. Agarwal, L. J. Guibas, S. Har-Peled, A. Rabinovitch, and M. Sharir. Computing the penetration depth of two convex polytopes in 3D. Nordic J. Comput. 7:227--240, 2000.
[3]
P. K. Agarwal, S. Krishnan, N. H. Mustafa, and S. Venkatasubramanian. In Proc. 11th European Sympos. Algorithms Lect. Notes Comput. Sci., vol. 2832, Springer-Verlag, pages 544--555, 2003.
[4]
P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent measures of points. http://-valis.cs.uiuc.edu/~sariel/research/papers/01/-fitting/, 2003. Preliminary versions appeared in Proc. 12th ACM-SIAM Sympos. Discrete Algorithms pages 148--157, 2001; Proc. 42nd IEEE Sympos. Found. Comput. Sci., pages 66--73, 2001.
[5]
P. K. Agarwal, J. Matoušek, and S. Suri. Farthest neighbors, maximum spanning trees and related problems in higher dimensions. Comput. Geom. Theory Appl., 1:189--201, 1992.
[6]
S. Arya, T. Malamatos, and D. M. Mount. Space-efficient approximate Voronoi diagrams. In Proc. 34th ACM Sympos. Theory Comput., pages 721--730, 2002.
[7]
M. Bǎdoiu and K. L. Clarkson. Optimal core-sets for balls. http://cm.bell-labs.com/who/clarkson/-pubs.html, 2003. Preliminary version in Proc. 14th ACM-SIAM Sympos. Discrete Algorithms pages 801--802, 2003.
[8]
M. Bǎdoiu, S. Har-Peled, and P. Indyk. Approximate clustering via core-sets. In Proc. 34th ACM Sympos. Theory Comput., pages 250--257, 2002.
[9]
G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume bounding box of a point set in three dimensions. J. Algorithms 38:91--109, 2001.
[10]
M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, Heidelberg, 1997.
[11]
H. Breu, J. Gil, D. Kirkpatrick, and M. Werman. Linear time Euclidean distance transform algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17:529-533, 1995.
[12]
E. M. Bronshteyn and L. D. Ivanov. The approximation of convex sets by polyhedra. Siberian Math. J., 16:852--853, 1976.
[13]
T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus. Int. J. Comput. Geom. Appl., 12:67--85, 2002.
[14]
R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. J. Approx. Theory, 10:227--236, 1974.
[15]
C. A. Duncan, M. T. Goodrich, and E. A. Ramos. Efficient approximation and optimization algorithms for computational metrology. In Proc. 8th ACM-SIAM Sympos. Discrete Algorithms pages 121--130, 1997.
[16]
J. Feigenbaum, S. Kannan, and J. Zhang. Computing diameter in the streaming and sliding-window models. Technical report YALEU/DCS/TR--1245, Yale University, 2002. Algorithmica, to appear.
[17]
S. Har-Peled. A practical approach for computing the diameter of a point-set. In Proc. 17th ACM Sympos. Comput. Geom., pages 177--186, 2001.
[18]
S. Har-Peled. A replacement for Voronoi diagrams of near linear size. In Proc. 42nd IEEE Sympos. Found. Comput. Sci., pages 94--103, 2001.
[19]
S. Har-Peled and K. Varadarajan. High-dimensional shape fitting in linear time. In Proc. 19th ACM Sympos. Comput. Geom., pages 39--47, 2003.
[20]
S. Har-Peled and Y. Wang. Shape fitting with outliers. SIAM J. Comput., 33:269--285, 2004.
[21]
M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams. Technical Note 1998--011, Digital Systems Research Center, Palo Alto, CA, 1998.
[22]
J. Hershberger and S. Suri. Convex hulls and related problems in data streams. ACM SIGMOD/PODS Workshop on Management and Processing of Data Streams (MPDS), http://www.research.att.com/-conf/mpds2003/schedule/, 2003.
[23]
R. Janardan. On maintaining the width and diameter of a planar point-set online. Int. J. Comput. Geom. Appl., 3:331--344, 1993.
[24]
G. Malandain and J.-D. Boissonnat. Computing the diameter of a point set. Int. J. Comput. Geom. Appl., 12:489--510, 2002.
[25]
S. Muthukrishnan. Data streams: algorithms and applications. http://www.cs.rutgers.edu/~muthu/, 2003.
[26]
G. Rote, C. Schwarz, and J. Snoeyink. Maintaining the approximate width of a set of points in the plane. In Proc. 5th Canad. Conf. Comput. Geom., pages 258--263, 1993.
[27]
J. O'Rourke. Finding minimal enclosing boxes. Internat. J. Comput. Info. Sci., 14:183--199, 1986.
[28]
O. Schwarzkopf. Parallel computation of distance transforms. Algorithmica, 6:685--697, 1991.

Cited By

View all
  • (2023)Deterministic Clustering in High Dimensional Spaces: Sketches and Approximation2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00066(1105-1130)Online publication date: 6-Nov-2023
  • (2022)Inference for Trustworthy Machine Intelligence: Challenges and Solutions2022 IEEE 4th International Conference on Cognitive Machine Intelligence (CogMI)10.1109/CogMI56440.2022.00014(27-34)Online publication date: Dec-2022
  • (2021)Classification in Non-stationary Environments Using Coresets over Sliding WindowsAdvances in Computational Intelligence10.1007/978-3-030-85030-2_11(126-137)Online publication date: 21-Aug-2021
  • Show More Cited By

Index Terms

  1. Faster core-set constructions and data stream algorithms in fixed dimensions

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SCG '04: Proceedings of the twentieth annual symposium on Computational geometry
    June 2004
    468 pages
    ISBN:1581138857
    DOI:10.1145/997817
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 08 June 2004

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. approximation algorithms
    2. data streams
    3. geometric optimization problems

    Qualifiers

    • Article

    Conference

    SoCG04
    SoCG04: Annual ACM Symposium on Computational Geometry 2004
    June 8 - 11, 2004
    New York, Brooklyn, USA

    Acceptance Rates

    SCG '04 Paper Acceptance Rate 49 of 147 submissions, 33%;
    Overall Acceptance Rate 625 of 1,685 submissions, 37%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)26
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 15 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Deterministic Clustering in High Dimensional Spaces: Sketches and Approximation2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00066(1105-1130)Online publication date: 6-Nov-2023
    • (2022)Inference for Trustworthy Machine Intelligence: Challenges and Solutions2022 IEEE 4th International Conference on Cognitive Machine Intelligence (CogMI)10.1109/CogMI56440.2022.00014(27-34)Online publication date: Dec-2022
    • (2021)Classification in Non-stationary Environments Using Coresets over Sliding WindowsAdvances in Computational Intelligence10.1007/978-3-030-85030-2_11(126-137)Online publication date: 21-Aug-2021
    • (2020)Reactive Concept Drift Detection Using Coresets Over Sliding Windows2020 IEEE Symposium Series on Computational Intelligence (SSCI)10.1109/SSCI47803.2020.9308521(1350-1355)Online publication date: 1-Dec-2020
    • (2017)Clustering high dimensional dynamic data streamsProceedings of the 34th International Conference on Machine Learning - Volume 7010.5555/3305381.3305441(576-585)Online publication date: 6-Aug-2017
    • (2017)Stochastic k-center and j-flat-center problemsProceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3039686.3039694(110-129)Online publication date: 16-Jan-2017
    • (2012)Computing the Nearest Neighbor Transform Exactly with Only Double PrecisionProceedings of the 2012 Ninth International Symposium on Voronoi Diagrams in Science and Engineering10.1109/ISVD.2012.13(66-74)Online publication date: 27-Jun-2012
    • (2012)Scandinavian thins on top of cakeProceedings of the 6th international conference on Fun with Algorithms10.1007/978-3-642-30347-0_5(16-27)Online publication date: 4-Jun-2012
    • (2011)Toward a Robust Search Method for the Protein-Drug Docking ProblemIEEE/ACM Transactions on Computational Biology and Bioinformatics10.1109/TCBB.2010.708:4(1120-1133)Online publication date: 1-Jul-2011
    • (2010)Approximate weighted farthest neighbors and minimum dilation starsProceedings of the 16th annual international conference on Computing and combinatorics10.5555/1886811.1886826(90-99)Online publication date: 19-Jul-2010
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media