Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3388440.3412473acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

Protein evolution is structure dependent and non-homogeneous across the tree of life

Published: 10 November 2020 Publication History

Abstract

Protein sequence evolution is a complex process that varies across the tree of life and among-sites within proteins. Comparing evolutionary rate matrices for specific taxa ('clade-specific models') can reveal this variation and provide information about the basis for changes in the paterns of protein evolution over time. However, clade-specific models can only provide this information if the variation among taxa exceeds the variation among proteins. We showed this to be the case by demonstrating that clade-specific model fit could distinguish among proteins from the four taxa that we examined (vertebrates, plants, oomycetes, and yeasts). Model fit classified proteins correctly by clade of origin >70% of the time. A relatively small number of dimensions can explain differences among models. If model parameters are averaged across all sites ~80% of the variance among models reflects clade; for models that consider protein structure ~50% of the variance reflected relative solvent accessibility and ~25% reflected clade. Relaxed purifying selection in taxa with smaller long-term effective population sizes appears to explain much of the among clade variance. Relaxed selection on solvent-exposed sites was correlated with the degree of change in amino acid side-chain volume for substitutions; other differences among models were more complex. Beyond the information they reveal about protein evolution, our clade-specific models also represent tools for phylogenomic inference. Availability: model files are available from htps://github.com/ebraun68/clade_specific_prot_models.

References

[1]
M. O. Dayhoff, R. V. Eck, and C. M. Park, "A model of evolutionary change in proteins," in Atlas of Protein Sequence and Structure, vol. 4, M. O. Dayhoff, Ed. Silver Springs, MD: National Biomedical Research Foundation, 1969, pp. 75--84.
[2]
C. C. Weber and S. Whelan, "Physicochemical amino acid properties better describe substitution rates in large populations.," Mol. Biol. Evol., vol. 36, no. 4, pp. 679--690, Apr. 2019.
[3]
Z. Zou and J. Zhang, "Amino acid exchangeabilities vary across the tree of life.," Sci. Adv., vol. 5, no. 12, p. eaax3124, Dec. 2019.
[4]
E. L. Braun, "An evolutionary model motivated by physicochemical properties of amino acids reveals variation among proteins.," Bioinformatics, vol. 34, no. 13, pp. i350--i356, Jul. 2018.
[5]
M. Kimura, "DNA and the neutral theory.," Philos. Trans. R. Soc. Lond. B. Biol. Sci., vol. 312, no. 1154, pp. 343--354, Jan. 1986.
[6]
W. Sung, M. S. Ackerman, S. F. Miller, T. G. Doak, and M. Lynch, "Drift-barrier hypothesis and mutation-rate evolution.," Proc. Natl. Acad. Sci. USA, vol. 109, no. 45, pp. 18488--18492, Nov. 2012.
[7]
M. G. Behringer and D. W. Hall, "The repeatability of genome-wide mutation rate and spectrum estimates.," Curr. Genet., vol. 62, no. 3, pp. 507--512, Aug. 2016.
[8]
B. Nabholz, N. Uwimana, and N. Lartillot, "Reconstructing the phylogenetic history of long-term effective population size and life-history traits using patterns of amino acid replacement in mitochondrial genomes of mammals and birds.," Genome Biol. Evol., vol. 5, no. 7, pp. 1273--1290, 2013.
[9]
E. Zuckerkandl and L. Pauling, "Evolutionary divergence and convergence in proteins," in Evolving genes and proteins, Elsevier, 1965, pp. 97--166.
[10]
S. Q. Le, N. Lartillot, and O. Gascuel, "Phylogenetic mixture models for proteins.," Philos. Trans. R. Soc. Lond. B. Biol. Sci., vol. 363, no. 1512, pp. 3965--3976, Dec. 2008.
[11]
S. Huzurbazar, G. Kolesov, S. E. Massey, K. C. Harris, A. Churbanov, and D. A. Liberles, "Lineage-specific differences in the amino acid substitution process.," J. Mol. Biol., vol. 396, no. 5, pp. 1410--1421, Mar. 2010.
[12]
J. Echave, S. J. Spielman, and C. O. Wilke, "Causes of evolutionary rate variation among protein sites.," Nat. Rev. Genet., vol. 17, no. 2, pp. 109--121, Feb. 2016.
[13]
A. G. Meyer and C. O. Wilke, "Integrating sequence variation and protein structure to identify sites under selection.," Mol. Biol. Evol., vol. 30, no. 1, pp. 36--44, Jan. 2013.
[14]
M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt, "A model of evolutionary change in proteins," in Atlas of Protein Sequence and Structure, vol. 5, M. O. Dayhoff, Ed. Silver Springs, MD: National Biomedical Research Foundation, 1978, pp. 345--352.
[15]
D. T. Jones, W. R. Taylor, and J. M. Thornton, "The rapid generation of mutation data matrices from protein sequences," Bioinformatics, vol. 8, no. 3, pp. 275--282, 1992.
[16]
S. Whelan and N. Goldman, "A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach.," Mol. Biol. Evol., vol. 18, no. 5, pp. 691--699, May 2001.
[17]
S. Q. Le and O. Gascuel, "An improved general amino acid replacement matrix.," Mol. Biol. Evol., vol. 25, no. 7, pp. 1307--1320, Jul. 2008.
[18]
C. O. Wilke, "Bringing molecules back into molecular evolution.," PLoS Comput. Biol., vol. 8, no. 6, p. e1002572, Jun. 2012.
[19]
G. Parisi and J. Echave, "Structural constraints and emergence of sequence patterns in protein evolution.," Mol. Biol. Evol., vol. 18, no. 5, pp. 750--756, May 2001.
[20]
G. C. Conant and P. F. Stadler, "Solvent exposure imparts similar selective pressures across a range of yeast proteins.," Mol. Biol. Evol., vol. 26, no. 5, pp. 1155--1161, May 2009.
[21]
A. Pandey and E. L. Braun, "Phylogenetic analyses of sites in different protein structural environments result in distinct placements of the metazoan root.," Biology (Basel), vol. 9, no. 4, Mar. 2020.
[22]
S. M. Soucy, J. Huang, and J. P. Gogarten, "Horizontal gene transfer: building the web of life.," Nat. Rev. Genet., vol. 16, no. 8, pp. 472--482, Aug. 2015.
[23]
R. O. Prum, J. S. Berv, A. Dornburg, D. J. Field, J. P. Townsend, E. M. Lemmon, and A. R. Lemmon, "A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing.," Nature, vol. 526, no. 7574, pp. 569--573, Oct. 2015.
[24]
S. Reddy, R. T. Kimball, A. Pandey, P. A. Hosner, M. J. Braun, S. J. Hackett, K.-L. Han, J. Harshman, C. J. Huddleston, S. Kingston, B. D. Marks, K. J. Miglia, W. S. Moore, F. H. Sheldon, C. C. Witt, T. Yuri, and E. L. Braun, "Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling.," Syst. Biol., vol. 66, no. 5, pp. 857--879, Sep. 2017.
[25]
K. Katoh, G. Asimenos, and H. Toh, "Multiple alignment of DNA sequences with MAFFT.," Methods Mol. Biol., vol. 537, pp. 39--64, 2009.
[26]
E. D. Jarvis, S. Mirarab, A. J. Aberer, B. Li, P. Houde, C. Li, S. Y. W. Ho, B. C. Faircloth, B. Nabholz, J. T. Howard, A. Suh, C. C. Weber, R. R. da Fonseca, J. Li, F. Zhang, H. Li, L. Zhou, N. Narula, L. Liu, G. Ganapathy, B. Boussau, Md. S. Bayzid, V. Zavidovych, S. Subramanian, T. Gabaldón, S. Capella-Gutiérrez, J. Huerta-Cepas, B. Rekepalli, K. Munch, M. Schierup, B. Lindow, W. C;.Warren, D. Ray, R. E Green, M. Bruford, X. Zhan, A. Dixon, S. Li, N. Li, Y. Huang, E. P. Derryberry, M. F. Bertelsen, F. Sheldon, R. T. Brumfield, C. Mello, P. V. Lovell, M. Wirthlin, J. A. Samaniego, A. M. V. Velazquez, A. Alfaro-Núñez, P. F. Campos, T. Sicheritz-Ponten, A. Pas, T. Bailey, P. Scofield, M. Bunce, D. Lambert, Q. Zhou, P. Perelman, A. C. Driskell, G. Ruby, B. Shapiro, Z. Xiong, Y. Zeng, S. Liu, Z. Li, B. Liu, K. Wu, J. Xiao, X. Yinqi, Q. Zheng, Y. Zhang, H. Yang, J. Wang, L. Smeds, F. E. Rheindt, M. Braun, J. Fjeldså, L. Orlando, K. Barker, K. A. Jønsson, W. Johnson, K.-P. Koepfli, S. O'Brien, D. Haussler, O. A. Ryder, C. Rahbek, E. Willerslev, G. R. Graves, T. C. Glenn, J. McCormack, D. Burt, H. Ellegren, P. Alström, S. V. Edwards, A. Stamatakis, D. P. Mindell, J. Cracraft, E. L. Braun, T. Warnow, Wang J., M. T. P. Gilbert, and G. Zhang, "Whole-genome analyses resolve early branches in the tree of life of modern birds.," Science, vol. 346, no. 6215, pp. 1320--1331, Dec. 2014.
[27]
E. D. Jarvis, S. Mirarab, A. J. Aberer, B. Li, P. Houde, C. Li, S. Y. W. Ho, B. C. Faircloth, B. Nabholz, J. T. Howard, A. Suh, C. C. Weber, R. R. da Fonseca, A. Alfaro-Núñez, N. Narula, L. Liu, D. Burt, H. Ellegren, S. V. Edwards, A. Stamatakis, D. P, Mindell, J. Cracraft, E. L. Braun, T. Warnow, Wang J., M. T. P. Gilbert, G. Zhang, and Avian Phylogenomics Consortium, "Phylogenomic analyses data of the avian phylogenomics project.," Gigascience, vol. 4, p. 4, Feb. 2015.
[28]
E. J. P. Douzery, C. Scornavacca, J. Romiguier, K. Belkhir, N. Galtier, F. Delsuc, and V. Ranwez, "OrthoMaM v8: a database of orthologous exons and coding sequences for comparative genomics in mammals.," Mol. Biol. Evol., vol. 31, no. 7, pp. 1923--1928, Jul. 2014.
[29]
Z. Xi, L. Liu, J. S. Rest, and C. C. Davis, "Coalescent versus concatenation methods and the placement of Amborella as sister to water lilies.," Syst. Biol., vol. 63, no. 6, pp. 919--932, Nov. 2014.
[30]
M. S. Ascunce, J. C. Huguet-Tapia, A. Ortiz-Urquiza, N. O. Keyhani, E. L. Braun, and E. M. Goss, "Phylogenomic analysis supports multiple instances of polyphyly in the oomycete peronosporalean lineage.," Mol. Phylogenet. Evol., vol. 114, pp. 199--211, Jun. 2017.
[31]
X.-X. Shen, D. A. Opulente, J. Kominek, X. Zhou, J. L. Steenwyk, K. V. Buh, M. A. B. Haase, J. H. Wisecaver, M. Wang, D. T. Doering, J. T. Boudouris, R. M. Schneider, Q. K. Langdon, M. Ohkuma, R. Endoh, M. Takashima, R.-I. Manabe, N. Čadež, D. Libkind, C. A. Rosa, and A. Rokas, "Tempo and mode of genome evolution in the budding yeast subphylum.," Cell, vol. 175, no. 6, pp. 1533--1545.e20, Nov. 2018.
[32]
J. F. H. Strassert, M. Jamy, A. P. Mylnikov, D. V. Tikhonenkov, and F. Burki, "New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life.," Mol. Biol. Evol., vol. 36, no. 4, pp. 757--765, Apr. 2019.
[33]
L.-T. Nguyen, H. A. Schmidt, A. von Haeseler, and B. Q. Minh, "IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.," Mol. Biol. Evol., vol. 32, no. 1, pp. 268--274, Jan. 2015.
[34]
M. A. Miller, W. Pfeiffer, and T. Schwartz, "Creating the CIPRES Science Gateway for inference of large phylogenetic trees," in 2010 Gateway Computing Environments Workshop (GCE), 2010, pp. 1--8.
[35]
Z. Yang, "PAML 4: phylogenetic analysis by maximum likelihood.," Mol. Biol. Evol., vol. 24, no. 8, pp. 1586--1591, Aug. 2007.
[36]
C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and T. L. Madden, "BLAST+: architecture and applications.," BMC Bioinformatics, vol. 10, p. 421, Dec. 2009.
[37]
N. J. Wickett, S. Mirarab, N. Nguyen, T. Warnow, E. Carpenter, N. Matasci, S. Ayyampalayam, M. S. Barker, J. G. Burleigh, M. A. Gitzendanner, B. R. Ruhfel, E. Wafula, J. P. Der, S. W. Graham, S. Mathews, M. Melkonian, D. E. Soltis, P. S. Soltis, N. W. Miles, C. J. Rothfels, L. Pokorny, A. Jonathan Shaw, L. DeGironimo, D. W. Stevenson, B. Surek, J. C. Villarreal, B. Roure, H. Philippe, C. W. dePamphilis, T. Chen, M. K. Deyholos, R. S. Baucom, T. M. Kutchan, M. M. Augustin, J. Wang, Y. Zhang, Z. Tian, Z. Yan, X. Wu, X. Sun, G. K.-S. Wong, and J. Leebens-Mack, "Phylotranscriptomic analysis of the origin and early diversification of land plants.," Proc. Natl. Acad. Sci. USA, vol. 111, no. 45, pp. E4859--68, Nov. 2014.
[38]
G. Lax, Y. Eglit, L. Eme, E. M. Bertrand, A. J. Roger, and A. G. B. Simpson, "Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes.," Nature, vol. 564, no. 7736, pp. 410--414, Nov. 2018.
[39]
A. Krogh, B. Larsson, G. von Heijne, and E. L. L. Sonnhammer, "Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes.," J. Mol. Biol., vol. 305, no. 3, pp. 567--580, Jan. 2001.
[40]
G. Pollastri, D. Przybylski, B. Rost, and P. Baldi, "Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles.," Proteins, vol. 47, no. 2, pp. 228--235, May 2002.
[41]
C. N. Magnan and P. Baldi, "SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity.," Bioinformatics, vol. 30, no. 18, pp. 2592--2597, Sep. 2014.
[42]
N. Goldman, J. L. Thorne, and D. T. Jones, "Assessing the impact of secondary structure and solvent accessibility on protein evolution.," Genetics, vol. 149, no. 1, pp. 445--458, May 1998.
[43]
S. S. Choi, E. J. Vallender, and B. T. Lahn, "Systematically assessing the influence of 3-dimensional structural context on the molecular evolution of mammalian proteomes.," Mol. Biol. Evol., vol. 23, no. 11, pp. 2131--2133, Nov. 2006.
[44]
S. Q. Le and O. Gascuel, "Accounting for solvent accessibility and secondary structure in protein phylogenetics is clearly beneficial.," Syst. Biol., vol. 59, no. 3, pp. 277--287, May 2010.
[45]
U. Perron, A. M. Kozlov, A. Stamatakis, N. Goldman, and I. H. Moal, "Modeling structural constraints on protein evolution via side-chain conformational states.," Mol. Biol. Evol., vol. 36, no. 9, pp. 2086--2103, Sep. 2019.
[46]
N. Saitou and M. Nei, "The neighbor-joining method: a new method for reconstructing phylogenetic trees.," Mol. Biol. Evol., vol. 4, no. 4, pp. 406--425, Jul. 1987.
[47]
L. Y. Yampolsky and A. Stoltzfus, "The exchangeability of amino acids in proteins.," Genetics, vol. 170, no. 4, pp. 1459--1472, Aug. 2005.
[48]
D. C. Nickle, L. Heath, M. A. Jensen, P. B. Gilbert, J. I. Mullins, and S. L. Kosakovsky Pond, "HIV-specific probabilistic models of protein evolution.," PLoS ONE, vol. 2, no. 6, p. e503, Jun. 2007.
[49]
C. C. Dang, Q. S. Le, O. Gascuel, and V. S. Le, "FLU, an amino acid substitution model for influenza proteins.," BMC Evol. Biol., vol. 10, p. 99, Apr. 2010.
[50]
C. L. Worth, S. Gong, and T. L. Blundell, "Structural and functional constraints in the evolution of protein families.," Nat. Rev. Mol. Cell Biol., vol. 10, no. 10, pp. 709--720, Oct. 2009.
[51]
K. K. Irwin, S. Laurent, S. Matuszewski, S. Vuilleumier, L. Ormond, H. Shim, C. Bank, and J. D. Jensen, "On the importance of skewed offspring distributions and background selection in virus population genetics.," Heredity, vol. 117, no. 6, pp. 393--399, Sep. 2016.
[52]
S. Gutiérrez, Y. Michalakis, and S. Blanc, "Virus population bottlenecks during within-host progression and host-to-host transmission.," Curr. Opin. Virol., vol. 2, no. 5, pp. 546--555, Oct. 2012.
[53]
S. A. Benner, M. A. Cohen, and G. H. Gonnet, "Amino acid substitution during functionally constrained divergent evolution of protein sequences," Protein Eng. Des. Sel., vol. 7, no. 11, pp. 1323--1332, 1994.
[54]
G. Mitchison and R. Durbin, "Tree-based maximal likelihood substitution matrices and hidden Markov models," J. Mol. Evol., vol. 41, no. 6, Dec. 1995.
[55]
T. Müller, R. Spang, and M. Vingron, "Estimating amino acid substitution models: a comparison of Dayhoff's estimator, the resolvent approach and a maximum likelihood method.," Mol. Biol. Evol., vol. 19, no. 1, pp. 8--13, Jan. 2002.
[56]
C. Kosiol and N. Goldman, "Markovian and non-Markovian protein sequence evolution: aggregated Markov process models.," J. Mol. Biol., vol. 411, no. 4, pp. 910--923, Aug. 2011.
[57]
C. Kosiol, I. Holmes, and N. Goldman, "An empirical codon model for protein sequence evolution.," Mol. Biol. Evol., vol. 24, no. 7, pp. 1464--1479, Jul. 2007.
[58]
D. Barry and J. A. Hartigan, "Statistical analysis of hominoid molecular evolution," Stat. Sci., vol. 2, no. 2, pp. 191--207, May 1987.
[59]
V. Jayaswal, J. Robinson, and L. Jermiin, "Estimation of phylogeny and invariant sites under the general Markov model of nucleotide sequence evolution.," Syst. Biol., vol. 56, no. 2, pp. 155--162, Apr. 2007.
[60]
J. P. Huelsenbeck, B. Larget, and M. E. Alfaro, "Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo.," Mol. Biol. Evol., vol. 21, no. 6, pp. 1123--1133, Jun. 2004.
[61]
E. T. Bell, "Exponential Numbers," The American Mathematical Monthly, vol. 41, no. 7, pp. 411--419, Aug. 1934.
[62]
Z. Yang, R. Nielsen, and M. Hasegawa, "Models of amino acid substitution and applications to mitochondrial protein evolution.," Mol. Biol. Evol., vol. 15, no. 12, pp. 1600--1611, Dec. 1998.
[63]
B. Q. Minh, C. C. Dang, L. S. Vinh, and R. Lanfear, "QMaker: Fast and accurate method to estimate empirical models of protein evolution," BioRxiv, https://doi.org/10.1101/2020.02.20.958819 Feb. 2020.
[64]
G. H. Gonnet, M. A. Cohen, and S. A. Benner, "Exhaustive matching of the entire protein sequence database.," Science, vol. 256, no. 5062, pp. 1443--1445, Jun. 1992.
[65]
M. O. Dayhoff and R. V. Eck, "The chemical meaning of amino acid mutations," in Atlas of Protein Sequence and Structure, vol. 4, M. O. Dayhoff, Ed. Silver Springs, MD: National Biomedical Research Foundation, 1969, pp. 85--87.
[66]
U. Bastolla, M. Porto, H. E. Roman, and M. Vendruscolo, "A protein evolution model with independent sites that reproduces site-specific amino acid distributions from the Protein Data Bank.," BMC Evol. Biol., vol. 6, p. 43, May 2006.
[67]
M. Arenas, H. G. Dos Santos, D. Posada, and U. Bastolla, "Protein evolution along phylogenetic histories under structurally constrained substitution models.," Bioinformatics, vol. 29, no. 23, pp. 3020--3028, Dec. 2013.

Cited By

View all
  • (2023)The Structure of Evolutionary Model Space for Proteins across the Tree of LifeBiology10.3390/biology1202028212:2(282)Online publication date: 10-Feb-2023
  • (2023)Phylogenomics using Compression Distances: Incorporating Rate Heterogeneity and Amino Acid PropertiesProceedings of the 14th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics10.1145/3584371.3612996(1-6)Online publication date: 3-Sep-2023
  • (2022)Dynamic Patterns of Sex Chromosome Evolution in Neognath Birds: Many Independent Barriers to Recombination at the ATP5F1A LocusBirds10.3390/birds30100043:1(51-70)Online publication date: 30-Jan-2022
  • Show More Cited By

Index Terms

  1. Protein evolution is structure dependent and non-homogeneous across the tree of life

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image ACM Conferences
        BCB '20: Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics
        September 2020
        193 pages
        ISBN:9781450379649
        DOI:10.1145/3388440
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Sponsors

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 10 November 2020

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. Effective population size
        2. Protein structure
        3. Purifying selection
        4. Relative solvent accessibility
        5. Substitution matrix

        Qualifiers

        • Research-article
        • Research
        • Refereed limited

        Conference

        BCB '20
        Sponsor:

        Acceptance Rates

        Overall Acceptance Rate 254 of 885 submissions, 29%

        Upcoming Conference

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)9
        • Downloads (Last 6 weeks)1
        Reflects downloads up to 14 Nov 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2023)The Structure of Evolutionary Model Space for Proteins across the Tree of LifeBiology10.3390/biology1202028212:2(282)Online publication date: 10-Feb-2023
        • (2023)Phylogenomics using Compression Distances: Incorporating Rate Heterogeneity and Amino Acid PropertiesProceedings of the 14th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics10.1145/3584371.3612996(1-6)Online publication date: 3-Sep-2023
        • (2022)Dynamic Patterns of Sex Chromosome Evolution in Neognath Birds: Many Independent Barriers to Recombination at the ATP5F1A LocusBirds10.3390/birds30100043:1(51-70)Online publication date: 30-Jan-2022
        • (2021)Protein Structure, Models of Sequence Evolution, and Data Type Effects in Phylogenetic Analyses of Mitochondrial Data: A Case Study in BirdsDiversity10.3390/d1311055513:11(555)Online publication date: 1-Nov-2021
        • (2021)The Roles of Protein Structure, Taxon Sampling, and Model Complexity in Phylogenomics: A Case Study Focused on Early Animal DivergencesBiophysica10.3390/biophysica10200081:2(87-105)Online publication date: 25-Mar-2021

        View Options

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media