Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3366423.3380119acmconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

Efficient Maximal Balanced Clique Enumeration in Signed Networks

Published: 20 April 2020 Publication History

Abstract

Clique is one of the most fundamental models for cohesive subgraph mining in network analysis. Existing clique model mainly focuses on unsigned networks. In real world, however, many applications are modeled as signed networks with positive and negative edges. As the signed networks hold their own properties different from the unsigned networks, the existing clique model is inapplicable for the signed networks. Motivated by this, we propose the balanced clique model that considers the most fundamental and dominant theory, structural balance theory, for signed networks, and study the maximal balanced clique enumeration problem which computes all the maximal balanced cliques in a given signed network. We show that the maximal balanced clique enumeration problem is NP-Hard. A straightforward solution for the maximal balanced clique enumeration problem is to treat the signed network as two unsigned networks and leverage the off-the-shelf techniques for unsigned networks. However, such a solution is inefficient for large signed networks. To address this problem, in this paper, we first propose a new maximal balanced clique enumeration algorithm by exploiting the unique properties of signed networks. Based on the new proposed algorithm, we devise two optimization strategies to further improve the efficiency of the enumeration. We conduct extensive experiments on large real and synthetic datasets. The experimental results demonstrate the efficiency, effectiveness and scalability of our proposed algorithms.

References

[1]
Peter Abell and Mark Ludwig. 2009. Structural balance: a dynamic perspective. Journal of Mathematical Sociology 33, 2 (2009), 129–155.
[2]
Akkoyunlu and E. A. 1973. The Enumeration of Maximal Cliques of Large Graphs[J]. SIAM J. Comput. 2, 1 (1973), 1–6.
[3]
R. Axelrod and D. S. Bennett. 1993. A landscape theory of aggregation. BJPS 23, 02 (1993), 211–233.
[4]
Coenraad Bron and Joep Kerbosch. 1973. Finding all cliques of an undirected graph (algorithm 457). Commun. ACM 16, 9 (1973), 575–576.
[5]
Dorwin Cartwright and Frank Harary. 1956. Structural balance: a generalization of Heider’s theory.Psychological review 63, 5 (1956), 277.
[6]
James Cheng, Linhong Zhu, Yiping Ke, and Shumo Chu. 2012. Fast algorithms for maximal clique enumeration with limited memory. In Proceedings of SIGKDD. 1240–1248.
[7]
N. Chiba and T. Nishizeki. 1985. Arboricity and subgraph listing algorithms. SIAM J. Comput 14, 1 (1985), 210–223.
[8]
Lingyang Chu, Zhefeng Wang, Jian Pei, Jiannan Wang, Zijin Zhao, and Enhong Chen. 2016. Finding gangs in war from signed networks. In Proceedings of SIGKDD. 1505–1514.
[9]
J. Cohen. 2008. Trusses: Cohesive subgraphs for social network analysis. IEEE Transactions on Knowledge and Data Engineering (2008).
[10]
Tyler Derr, Charu Aggarwal, and Jiliang Tang. 2018. Signed Network Modeling Based on Structural Balance Theory. In Proceedings of CIKM. 557–566.
[11]
David Easley and Jon Kleinberg. 2010. Networks, crowds, and markets: Reasoning about a highly connected world. Cambridge University Press.
[12]
David Eppstein, Maarten Löffler, and Darren Strash. 2010. Listing all maximal cliques in sparse graphs in near-optimal time. In International Symposium on Algorithms and Computation. 403–414.
[13]
David Eppstein and Darren Strash. 2011. Listing all maximal cliques in large sparse real-world graphs. In International Symposium on Experimental Algorithms. 364–375.
[14]
Faten Fakhfakh, Mohamed Tounsi, Mohamed Mosbah, and Ahmed Hadj Kacem. 2017. Algorithms for Finding Maximal and Maximum Cliques: A Survey. In International Conference on Intelligent Systems Design and Applications. 745–754.
[15]
Xing Feng, Lijun Chang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Long Yuan. 2018. Distributed computing connected components with linear communication cost. Distributed and Parallel Databases 36, 3 (2018), 555–592.
[16]
Ming Gao, Ee-Peng Lim, David Lo, and Philips Kokoh Prasetyo. 2016. On detecting maximal quasi antagonistic communities in signed graphs. Data mining and knowledge discovery 30, 1 (2016), 99–146.
[17]
Fei Hao, Stephen S Yau, Geyong Min, and Laurence T Yang. 2014. Detecting k-balanced trusted cliques in signed social networks. IEEE Internet Computing 18, 2 (2014), 24–31.
[18]
Frank Harary 1953. On the notion of balance of a signed graph.The Michigan Mathematical Journal 2, 2 (1953), 143–146.
[19]
Fritz Heider. 1946. Attitudes and cognitive organization. The Journal of psychology 21, 1 (1946), 107–112.
[20]
Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014. Querying k-truss community in large and dynamic graphs. In SIGMOD. 1311–1322.
[21]
Margarita Išoraitė. 2009. Importance of strategic alliances in company’s activity. BJPS 1, 5 (2009), 39–46.
[22]
Adit Krishnan, Deepak P, Sayan Ranu, and Sameep Mehta. 2018. Leveraging semantic resources in diversified query expansion. World Wide Web 21, 4 (2018), 1041–1067.
[23]
Srijan Kumar, Francesca Spezzano, V. S. Subrahmanian, and Christos Faloutsos. 2016. Edge Weight Prediction in Weighted Signed Networks. In IEEE 16th International Conference on Data Mining. 221–230.
[24]
Vishwajeet Kumar, Nitish Joshi, Arijit Mukherjee, Ganesh Ramakrishnan, and Preethi Jyothi. 2019. Cross-Lingual Training for Automatic Question Generation. In ACL. 4863–4872.
[25]
Jérôme Kunegis, Andreas Lommatzsch, and Christian Bauckhage. 2009. The slashdot zoo: mining a social network with negative edges. In Proceedings of WWW. 741–750.
[26]
Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Signed networks in social media. In Proceedings of SIGCHI. 1361–1370.
[27]
Rong-Hua Li, Qiangqiang Dai, Lu Qin, Guoren Wang, Xiaokui Xiao, Jeffrey Xu Yu, and Shaojie Qiao. 2018. Efficient Signed Clique Search in Signed Networks. In Proceedings of ICDE. 245–256.
[28]
Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, and Jingren Zhou. 2019. Efficient (α, β)-core Computation: an Index-based Approach. In Proceedings of WWW. 1130–1141.
[29]
Weiwei Liu, Ivor W. Tsang, and Klaus-Robert Müller. 2017. An Easy-to-hard Learning Paradigm for Multiple Classes and Multiple Labels. J. Mach. Learn. Res. 18(2017), 94:1–94:38.
[30]
Weiwei Liu, Donna Xu, Ivor W. Tsang, and Wenjie Zhang. 2019. Metric Learning for Multi-Output Tasks. IEEE Trans. Pattern Anal. Mach. Intell. 41, 2 (2019), 408–422.
[31]
David Lo, Didi Surian, and Kuan Zhang. 2011. Mining direct antagonistic communities in explicit trust networks. In Proceedings of CIKM. 1013–1018.
[32]
Seth A Marvel, Jon Kleinberg, Robert D Kleinberg, and Steven H Strogatz. 2011. Continuous-time model of structural balance. Proceedings of the National Academy of Sciences 108, 5 (2011), 1771–1776.
[33]
Seth A Marvel, Steven H Strogatz, and Jon M Kleinberg. 2009. Energy landscape of social balance. Physical review letters 103, 19 (2009), 198701.
[34]
G. A. Miller.1995. Wordnet: a lexical database for english. Commun. ACM 38, 11 (1995), 39–41.
[35]
Le Ou-Yang, Dao-Qing Dai, and Xiao-Fei Zhang. 2015. Detecting protein complexes from signed protein-protein interaction networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics 12, 6(2015), 1333–1344.
[36]
Dian Ouyang, Long Yuan, Lu Qin, Lijun Chang, and Ying Zhang. 2020. Efficient Shortest Path Index Maintenance on Dynamic Road Networks with Theoretical Guarantees. PVLDB 13, 5 (2020), 602–615.
[37]
Dian Ouyang, Long Yuan, Fan Zhang, Lu Qin, and Xuemin Lin. 2018. Towards Efficient Path Skyline Computation in Bicriteria Networks. In Proceedings of DASFAA. 239–254.
[38]
Jeffrey Pattillo, Nataly Youssef, and Sergiy Butenko. 2013. On clique relaxation models in network analysis. European Journal of Operational Research 226, 1 (2013), 9–18.
[39]
Zhu Qing, Long Yuan, Fan Zhang, Lu Qin, Xuemin Lin, and Wenjie Zhang. 2018. External Topological Sorting in Large Graphs. In Proceedings of DASFAA. 203–220.
[40]
Ahmet Erdem Sariyuce, C Seshadhri, Ali Pinar, and Umit V Catalyurek. 2015. Finding the hierarchy of dense subgraphs using nucleus decompositions. In Proceedings of WWW. 927–937.
[41]
Ahmet Erdem Sariyüce, C. Seshadhri, Ali Pinar, and Ümit V. Çatalyürek. 2017. Nucleus Decompositions for Identifying Hierarchy of Dense Subgraphs. TWEB 11, 3 (2017), 16:1–16:27.
[42]
Matthew C. Schmidt, Nagiza F. Samatova, Kevin Thomas, and Byung-Hoon Park. 2009. A Scalable, Parallel Algorithm for Maximal Clique Enumeration. J. Parallel Distrib. Comput. 69, 4 (2009), 417–428.
[43]
Stephen B Seidman. 1983. Network structure and minimum degree. Social networks 5, 3 (1983), 269–287.
[44]
Xiaodan Song, Yun Chi, Koji Hino, and Belle Tseng. 2007. Identifying opinion leaders in the blogosphere. In Proceedings of CIKM. 971–974.
[45]
Yansen Su, Bangju Wang, Fan Cheng, Xingyi Zhang, and Linqiang Pan. 2017. An algorithm based on positive and negative links for community detection in signed networks. In Nature Scientific Reports.
[46]
Jiliang Tang, Yi Chang, Charu Aggarwal, and Huan Liu. 2016. A survey of signed network mining in social media. Comput. Surveys 49, 3 (2016), 42.
[47]
Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. 2006. The worst-case time complexity for generating all maximal cliques and computational experiments. Theoretical Computer Science 363, 1 (2006), 28–42.
[48]
D. Wen, L. Qin, Y. Zhang, X. Lin, and J. X. Yu. 2019. I/O Efficient Core Graph Decomposition: Application to Degeneracy Ordering. IEEE TKDE 31, 1 (2019), 75–90.
[49]
Xudong Wu, Long Yuan, Xuemin Lin, Shiyu Yang, and Wenjie Zhang. 2019. Towards Efficient k-TriPeak Decomposition on Large Graphs. In Proceedings of DASFAA. 604–621.
[50]
Tong Xu, Dong Liu, Enhong Chen, Huanhuan Cao, and Jilei Tian. 2012. Towards annotating media contents through social diffusion analysis. In Proceedings of ICDM. 1158–1163.
[51]
Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang. 2016. Diversified top-k clique search. VLDB J. 25, 2 (2016), 171–196.
[52]
Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang. 2016. I/O Efficient ECC Graph Decomposition via Graph Reduction. PVLDB 9, 7 (2016), 516–527.
[53]
Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang. 2017. Effective and Efficient Dynamic Graph Coloring. PVLDB 11, 3 (2017), 338–351.
[54]
Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang. 2017. I/O efficient ECC graph decomposition via graph reduction. VLDB J. 26, 2 (2017), 275–300.
[55]
Long Yuan, Lu Qin, Wenjie Zhang, Lijun Chang, and Jianye Yang. 2018. Index-Based Densest Clique Percolation Community Search in Networks. IEEE TKDE 30, 5 (2018), 922–935.
[56]
Yujie Zeng and Jing Liu. [n.d.]. Community detection from signed social networks using a multi-objective evolutionary algorithm. In Proceedings of IES, Vol. 1.
[57]
Yun Zhang, Charles A Phillips, Gary L Rogers, Erich J Baker, Elissa J Chesler, and Michael A Langston. 2014. On finding bicliques in bipartite graphs: a novel algorithm and its application to the integration of diverse biological data types. BMC bioinformatics 15, 1 (2014), 110.
[58]
Xiaolong Zheng and Daniel Zeng. 2015. Social balance in signed networks. Information Systems Frontiers 17, 5 (2015), 1077–1095.
[59]
R. Zhou, C. Liu, J. X. Yu, W. Liang, B. Chen, and J. Li. 2012. Finding maximal k-edge-connected subgraphs from a large graph. in EDBT (2012).

Cited By

View all
  • (2024)Efficient Maximal Motif-Clique Enumeration over Large Heterogeneous Information NetworksProceedings of the VLDB Endowment10.14778/3681954.368197517:11(2946-2959)Online publication date: 30-Aug-2024
  • (2024)Efficient Maximal Biclique Enumeration on Large Signed Bipartite GraphsIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.337365436:9(4618-4631)Online publication date: Sep-2024
  • (2024)Efficient Balanced Signed Biclique Search in Signed Bipartite GraphsIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2023.329672136:3(1069-1083)Online publication date: Mar-2024
  • Show More Cited By

Index Terms

  1. Efficient Maximal Balanced Clique Enumeration in Signed Networks
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image ACM Conferences
        WWW '20: Proceedings of The Web Conference 2020
        April 2020
        3143 pages
        ISBN:9781450370233
        DOI:10.1145/3366423
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Sponsors

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 20 April 2020

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. Graph Algorithm
        2. Maximal Balanced Clique
        3. Signed Network

        Qualifiers

        • Research-article
        • Research
        • Refereed limited

        Conference

        WWW '20
        Sponsor:
        WWW '20: The Web Conference 2020
        April 20 - 24, 2020
        Taipei, Taiwan

        Acceptance Rates

        Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)78
        • Downloads (Last 6 weeks)7
        Reflects downloads up to 10 Nov 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Efficient Maximal Motif-Clique Enumeration over Large Heterogeneous Information NetworksProceedings of the VLDB Endowment10.14778/3681954.368197517:11(2946-2959)Online publication date: 30-Aug-2024
        • (2024)Efficient Maximal Biclique Enumeration on Large Signed Bipartite GraphsIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.337365436:9(4618-4631)Online publication date: Sep-2024
        • (2024)Efficient Balanced Signed Biclique Search in Signed Bipartite GraphsIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2023.329672136:3(1069-1083)Online publication date: Mar-2024
        • (2024)Identifying Large Structural Balanced Cliques in Signed GraphsIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2023.329580336:3(1145-1160)Online publication date: Mar-2024
        • (2024)Finding the Maximum k- Balanced Biclique on Weighted Bipartite Graphs (Extended abstract)2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00480(5697-5698)Online publication date: 13-May-2024
        • (2024)Batch Hop-Constrained s-t Simple Path Query Processing in Large Graphs2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00201(2557-2569)Online publication date: 13-May-2024
        • (2024)Positive Communities on Signed Graphs That Are Not Echo Chambers: A Clique-Based Approach2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00199(2531-2543)Online publication date: 13-May-2024
        • (2024)A two-phase approach for enumeration of maximal $$(\Delta , \gamma )$$-cliques of a temporal networkSocial Network Analysis and Mining10.1007/s13278-024-01207-y14:1Online publication date: 8-Mar-2024
        • (2023)Maximum Balanced (k,ϵ)-Bitruss Detection in Signed Bipartite GraphProceedings of the VLDB Endowment10.14778/3632093.363209917:3(332-344)Online publication date: 1-Nov-2023
        • (2023)Maximal Defective Clique EnumerationProceedings of the ACM on Management of Data10.1145/35889311:1(1-26)Online publication date: 30-May-2023
        • Show More Cited By

        View Options

        Get Access

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format.

        HTML Format

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media