Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3314074.3314104acmotherconferencesArticle/Chapter ViewAbstractPublication PagessmcConference Proceedingsconference-collections
research-article

Modeling the learner within an ILE: Attribute scoring and unsupervised classification of the profile

Published: 28 March 2019 Publication History

Abstract

The observation and the monitoring of the learner is a fundamental problem for interactive learning environments (ILE). The ILE needs to provide tools to replace traditional means and the analysis of the learner's interactions with his learning environment must fill this gap through digital traces. Thus, we propose in our research, an approach of identification, analysis and interpretation of the traces allowing all the actors of the ILE (including the learner) to improve the experience of the learner, throughout his learning cycle. This approach is based on the implementation of attributes associated with the learner to which we will assign scores, as well as iterative clustering algorithms for modeling the learner profile. In addition, it is based on the adaptation of the course according to this profile in order to provide course recommendations. We will use the data sources offered by our MOOC "Back to English" (Ibn Tofail University, Kenitra, Morocco) to illustrate our modeling. In this article, we will focus only on the learner modeling steps using scoring techniques applied to collected traces as well as the grouping of learners via unsupervised clustering algorithms.

References

[1]
Algorithme pour le big data Application on Spark ML, Rakia JAZIRI, 2017
[2]
Todd C.R. (Todd, 2004). Myers-Briggs Type Indicator®. The Skeptic's Dictionary. http://skepdic.com/myersb.html
[3]
Al-Dujaily, H. A. Ryu (2006). A Relationship between e-Learning Performance and Personality, ICALT
[4]
Umbriaco M.et Gosselin L. (2002). Emotion, cognition et formation à distance. in: Revue du Conseil québécois de la formation à distance. pp. 113--122. 2002
[5]
Jermann, P., Soller, A. et Muehlenbrock, M. (2001). From mirroring to guiding: A review of state of the art technology for supporting collaborative learning. (p. 324--331).
[6]
Diagne, F., « MTSA: Un Modèle de Traces pour la Supervision de l'apprentissage », Actes de l'atelier Modélisation des connaissances des 6èmes journées francophones, Lille, 16 janvier 2006, p. 38--48.
[7]
Beauvisage, T., Sémantique des parcours des utilisateurs sur le Web.Thèse de doctorat, l'Université de Paris X, 2004, 361p.
[8]
https://www.journaldunet.com/solutions/systemes-reseaux/definition-d-hadoop.shtml
[9]
David, J.-P., Lejeune, A., Luengo, V., Pernin, J-P., Diagne, F., Adam, JM., et Choquet, C. (2005). State of art of tracking and analysing usage. Délivrable de la tâche 32.3.1 (Final) 47p.
[10]
Nabila Bousbia, Analyse des traces de navigation des apprenants dans un environnement de formation dans une perspective de détection automatique des styles d'apprentissage
[11]
Alexia Audevart Le Machine Learning d' A à Z, Salon Data Toulouse, 2017 https://www.youtube.com/watch?v=BLZo9QLt0UY
[12]
ENC education service, Data science and big Data Analytics: discovering, Analysing, visualizing and presenting Data
[13]
https://blog.arcbees.com/fr/2017/02/08/introduction-aux-systemes-de-recommandation/
[14]
Analyse de la participation à un cours en ligne ouvert à tous: le cas d'enseigner et former avec le numérique (eFAN) Mehdi Khaneboubi, Georges-Louis Baron, 2015
[15]
Analyse des traces dans Moodle - Conférence ILE'2009 Manel Ben Sassi, Mona Laroussi, 2009
[16]
Analyse des traces et ergonomies, Etude du MOOC COURLIS.Thomas Fradet, Nicolas Lefebvre, 2014
[17]
Perception de l'activité de l'apprenant dans un environnement de formation. Nabila Bousbia, Jean-Marc Labat, 2007
[18]
Robin Burke. Hybrid recommender systems: Survey and experiments. User modeling and user adapted interaction (2002).
[19]
Robin Burke. Hybrid web recommender systems. The adaptive web. 2007.
[20]
Sandy El Helou. The 3A Interaction Model and Relation-Based Recommender System: Adopting Social Media Paradigms in Designing Personal Learning Environments. 2010.
[21]
Sandy El Helou, Na Li et Denis Gillet.The 3A interaction model: towards bridging the gap between formal and informal learning. Third International Conference on. 2010.
[22]
Aleven, V., McLaughlin, E. A., Glenn, R. A., & Koedinger, K. R. (s. d.). Instruction based on adaptive learning technologies. Handbook of research on learning and instruction. Routledge.
[23]
Heilman, M., Collins-Thompson, K., Callan, J., Eskenazi, M., Juffs, A., & Wilson, L. (2010). Personalization of reading passages improves vocabulary acquisition. International Journal of Artificial Intelligence in Education, 20(1), 73--98.
[24]
Göbel, S., Wendel, V., Ritter, C., & Steinmetz, R. (2010). Personalized, adaptive digital educational games using narrative game-based learning objects. In 5th International Conference on E-learning and Games (Edutainment 2010) (p. 438--445). Changchun, Chine.
[25]
https://fr.wikipedia.org/wiki/Regroupement_hi%C3%A9rarchique
[26]
https://fr.wikipedia.org/wiki/DBSCAN
[27]
http://eric.univ-lyon2.fr/~ricco/cours/slides/kohonen_som.pdf

Cited By

View all
  • (2023)Opportunities and challenges of adopting MOOCs in Africa: A systematic literature reviewMassive Open Online Courses - Current Practice and Future Trends10.5772/intechopen.1001298Online publication date: 15-Mar-2023

Index Terms

  1. Modeling the learner within an ILE: Attribute scoring and unsupervised classification of the profile

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    SMC '19: Proceedings of the New Challenges in Data Sciences: Acts of the Second Conference of the Moroccan Classification Society
    March 2019
    156 pages
    ISBN:9781450361293
    DOI:10.1145/3314074
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    In-Cooperation

    • AUF: Agence Universitaire de la Francophonie

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 28 March 2019

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. ILE **
    2. MOOC *
    3. clustering
    4. course
    5. learners
    6. resources
    7. scoring
    8. trace analysis
    9. unsupervised algorithm

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    SMC '19

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)2
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 20 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Opportunities and challenges of adopting MOOCs in Africa: A systematic literature reviewMassive Open Online Courses - Current Practice and Future Trends10.5772/intechopen.1001298Online publication date: 15-Mar-2023

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media