Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3292500.3330692acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article
Public Access

Nonparametric Mixture of Sparse Regressions on Spatio-Temporal Data -- An Application to Climate Prediction

Published: 25 July 2019 Publication History

Abstract

Climate prediction is a very challenging problem. Many institutes around the world try to predict climate variables by building climate models called General Circulation Models (GCMs), which are based on mathematical equations that describe the physical processes. The prediction abilities of different GCMs may vary dramatically across different regions and time. Motivated by the need of identifying which GCMs are more useful for a particular region and time, we introduce a clustering model combining Dirichlet Process (DP) mixture of sparse linear regression with Markov Random Fields (MRFs). This model incorporates DP to automatically determine the number of clusters, imposes MRF constraints to guarantee spatio-temporal smoothness, and selects a subset of GCMs that are useful for prediction within each spatio-temporal cluster with a spike-and-slab prior. We derive an effective Gibbs sampling method for this model. Experimental results are provided for both synthetic and real-world climate data.

Supplementary Material

MP4 File (p2556-liu.mp4)

References

[1]
David J Aldous. 1985. Exchangeability and related topics. In École d'Été de Probabilités de Saint-Flour XIII-1983. Springer, 1--198.
[2]
Mohammad Taha Bahadori, Qi Rose Yu, and Yan Liu. 2014. Fast multivariate spatio-temporal analysis via low rank tensor learning. In Advances in neural information processing systems. 3491--3499.
[3]
Sugato Basu, Mikhail Bilenko, Arindam Banerjee, and Raymond J Mooney. 2006. Probabilistic semi-supervised clustering with constraints. Semi-supervised learning (2006), 71--98.
[4]
Luc Bauwens, Jean-Francc ois Carpantier, and Arnaud Dufays. 2017. Autoregressive moving average infinite hidden Markov-switching models. Journal of Business & Economic Statistics, Vol. 35, 2 (2017), 162--182.
[5]
Marco Bazzi, Francisco Blasques, Siem Jan Koopman, and Andre Lucas. 2017. Time-varying transition probabilities for Markov regime switching models. Journal of Time Series Analysis, Vol. 38, 3 (2017), 458--478.
[6]
Lee Botts and Bruce Krushelnicki. 1987. The Great Lakes. An Environmental Atlas and Resource Book. ERIC.
[7]
George Casella and Edward I George. 1992. Explaining the Gibbs sampler. The American Statistician, Vol. 46, 3 (1992), 167--174.
[8]
FJ Doblas-Reyes, R Hagedorn, and TN Palmer. 2006. Developments in dynamical seasonal forecasting relevant to agricultural management. Climate Research, Vol. 33, 1 (2006), 19--26.
[9]
Karl E. Taylor, Stouffer Ronald, and Gerald Meehl. 2011. An overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society, Vol. 93 (11 2011), 485--498.
[10]
Emily Fox, Erik B Sudderth, Michael I Jordan, and Alan S Willsky. 2009. Nonparametric Bayesian learning of switching linear dynamical systems. In Advances in Neural Information Processing Systems. 457--464.
[11]
Edward I George and Robert E McCulloch. 1993. Variable selection via Gibbs sampling. J. Amer. Statist. Assoc., Vol. 88, 423 (1993), 881--889.
[12]
André R Goncc alves, Puja Das, Soumyadeep Chatterjee, Vidyashankar Sivakumar, Fernando J Von Zuben, and Arindam Banerjee. 2014. Multi-task sparse structure learning. In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. ACM, 451--460.
[13]
Arthur M Greene, Lisa Goddard, and Upmanu Lall. 2006. Probabilistic multimodel regional temperature change projections. Journal of Climate, Vol. 19, 17 (2006), 4326--4343.
[14]
Jonathan Gregory, Ronald J Stouffer, Mario Molina, Amnat Chidthaisong, Susan Solomon, Graciela Raga, Pierre Friedlingstein, Nathaniel L Bindoff, Hervé Le Treut, Matilde Rusticucci, et almbox. 2007. Climate change 2007: the physical science basis. (2007).
[15]
William W Hargrove and Forrest M Hoffman. 2004. Potential of multivariate quantitative methods for delineation and visualization of ecoregions. Environmental management, Vol. 34, 1 (2004), S39--S60.
[16]
Forrest M Hoffman, William W Hargrove Jr, David J Erickson III, and Robert J Oglesby. 2005. Using clustered climate regimes to analyze and compare predictions from fully coupled general circulation models. Earth Interactions, Vol. 9, 10 (2005), 1--27.
[17]
Wladimir Köppen. 1884. Die W"armezonen der Erde, nach der Dauer der heissen, gem"assigten und kalten Zeit und nach der Wirkung der W"arme auf die organische Welt betrachtet. Meteorologische Zeitschrift, Vol. 1, 21 ( 1884), 5--226.
[18]
Wladimir Köppen, Esther Volken, and Stefan Brönnimann. 2011. The thermal zones of the earth according to the duration of hot, moderate and cold periods and to the impact of heat on the organic world (Translated from: Die W"armezonen der Erde, nach der Dauer der heissen, gem"assigten und kalten Zeit und nach der Wirkung der W"arme auf die organische Welt betrachtet, Meteorol Z 1884, 1, 215--226). Meteorologische Zeitschrift, Vol. 20, 3 (2011), 351--360.
[19]
Devashish Kumar and Auroop R Ganguly. 2018. Intercomparison of model response and internal variability across climate model ensembles. Climate dynamics, Vol. 51, 1--2 (2018), 207--219.
[20]
Devashish Kumar, Evan Kodra, and Auroop R Ganguly. 2014. Regional and seasonal intercomparison of CMIP3 and CMIP5 climate model ensembles for temperature and precipitation. Climate dynamics, Vol. 43, 9--10 (2014), 2491--2518.
[21]
John Lafferty, Andrew McCallum, and Fernando CN Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. (2001).
[22]
Scott McQuade and Claire Monteleoni. 2012. Global climate model tracking using geospatial neighborhoods. In Twenty-Sixth AAAI Conference on Artificial Intelligence .
[23]
Toby J. Mitchell and John J. Beauchamp. 1988. Bayesian variable selection in linear regression. J. Amer. Statist. Assoc., Vol. 83, 404 (1988), 1023--1032.
[24]
Paul A O'Gorman and John G Dwyer. 2018. Using Machine Learning to Parameterize Moist Convection: Potential for Modeling of Climate, Climate Change, and Extreme Events. Journal of Advances in Modeling Earth Systems, Vol. 10, 10 (2018), 2548--2563.
[25]
Paul A O'Gorman and Tapio Schneider. 2009. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proceedings of the National Academy of Sciences, Vol. 106, 35 (2009), 14773--14777.
[26]
Peter Orbanz and Joachim M Buhmann. 2008. Nonparametric Bayesian image segmentation. International Journal of Computer Vision, Vol. 77, 1--3 (2008), 25--45.
[27]
TN Palmer, FJ Doblas-Reyes, A Weisheimer, and MJ Rodwell. 2008. Toward seamless prediction: Calibration of climate change projections using seasonal forecasts. Bulletin of the American Meteorological Society, Vol. 89, 4 (2008), 459--470.
[28]
Tim N Palmer, A Alessandri, U Andersen, P Cantelaube, M Davey, Pascale Delécluse, Michel Déqué, E Diez, Francisco Javier Doblas-Reyes, Henrik Feddersen, et almbox. 2004. Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bulletin of the American Meteorological Society, Vol. 85, 6 (2004), 853--872.
[29]
Jorge Prendes, Marie Chabert, Frédéric Pascal, Alain Giros, and Jean-Yves Tourneret. 2015. Change detection for optical and radar images using a Bayesian nonparametric model coupled with a Markov random field. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 1513--1517.
[30]
Simon JD Prince. 2012. Computer vision: models, learning, and inference .Cambridge University Press.
[31]
Stephan Rasp, Michael S Pritchard, and Pierre Gentine. 2018. Deep learning to represent subgrid processes in climate models. Proceedings of the National Academy of Sciences, Vol. 115, 39 (2018), 9684--9689.
[32]
Markus Reichstein, Gustau Camps-Valls, Bjorn Stevens, Martin Jung, Joachim Denzler, Nuno Carvalhais, et almbox. 2019. Deep learning and process understanding for data-driven Earth system science. Nature, Vol. 566, 7743 (2019), 195.
[33]
James Ross and Jennifer Dy. 2013. Nonparametric mixture of Gaussian processes with constraints. In International Conference on Machine Learning. 1346--1354.
[34]
Richard L Smith, Claudia Tebaldi, Doug Nychka, and Linda O Mearns. 2009. Bayesian modeling of uncertainty in ensembles of climate models. J. Amer. Statist. Assoc., Vol. 104, 485 (2009), 97--116.
[35]
Karsten Steinhaeuser, Nitesh V Chawla, and Auroop R Ganguly. 2011. Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science. Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. 4, 5 (2011), 497--511.
[36]
Alexander Strehl and Joydeep Ghosh. 2002. Cluster ensembles--a knowledge reuse framework for combining multiple partitions. Journal of machine learning research, Vol. 3, Dec (2002), 583--617.
[37]
Yee W Teh, Michael I Jordan, Matthew J Beal, and David M Blei. 2005. Sharing clusters among related groups: Hierarchical Dirichlet processes. In Advances in neural information processing systems. 1385--1392.
[38]
Cort J Willmott. 2000. Terrestrial air temperature and precipitation: Monthly and annual time series (1950--1996). WWW url: http://climate. geog. udel. edu/ climate/html_pages/README. ghcn_ts. html (2000).

Cited By

View all
  • (2023)Explainable deep learning for insights in El Niño and river flowsNature Communications10.1038/s41467-023-35968-514:1Online publication date: 20-Jan-2023
  • (2022)Physics-Coupled Spatio-Temporal Active Learning for Dynamical SystemsIEEE Access10.1109/ACCESS.2022.321454410(112909-112920)Online publication date: 2022

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
KDD '19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
July 2019
3305 pages
ISBN:9781450362016
DOI:10.1145/3292500
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 25 July 2019

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. climate
  2. dirichlet process
  3. markov random field
  4. spatio-temporal
  5. spike-and-slab

Qualifiers

  • Research-article

Funding Sources

Conference

KDD '19
Sponsor:

Acceptance Rates

KDD '19 Paper Acceptance Rate 110 of 1,200 submissions, 9%;
Overall Acceptance Rate 1,133 of 8,635 submissions, 13%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)78
  • Downloads (Last 6 weeks)19
Reflects downloads up to 25 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Explainable deep learning for insights in El Niño and river flowsNature Communications10.1038/s41467-023-35968-514:1Online publication date: 20-Jan-2023
  • (2022)Physics-Coupled Spatio-Temporal Active Learning for Dynamical SystemsIEEE Access10.1109/ACCESS.2022.321454410(112909-112920)Online publication date: 2022

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media