Nothing Special   »   [go: up one dir, main page]

skip to main content
survey

A Survey on Multidimensional Scaling

Published: 23 May 2018 Publication History

Abstract

This survey presents multidimensional scaling (MDS) methods and their applications in real world. MDS is an exploratory and multivariate data analysis technique becoming more and more popular. MDS is one of the multivariate data analysis techniques, which tries to represent the higher dimensional data into lower space. The input data for MDS analysis is measured by the dissimilarity or similarity of the objects under observation. Once the MDS technique is applied to the measured dissimilarity or similarity, MDS results in a spatial map. In the spatial map, the dissimilar objects are far apart while objects which are similar are placed close to each other. In this survey article, MDS is described in comprehensive fashion by explaining the basic notions of classical MDS and how MDS can be helpful to analyze the multidimensional data. Later on, various special models based on MDS are described in a more mathematical way followed by comparisons of various MDS techniques.

References

[1]
Y. Aflalo, A. Dubrovina, and R. Kimmel. 2013. Spectral generalized multi-dimensional scaling. CoRR 1311 (Nov 2013).
[2]
S. M. N. Alam and Z. J. Haas. 2006. Topology Control and Network Lifetime in Three-Dimensional Wireless Sensor Networks. Technical Report cs.NI/0609047. CERN.
[3]
A. Amar, Yiyin Wang, and G. Leus. 2010. Extending the classical multidimensional scaling algorithm given partial pairwise distance measurements. IEEE Signal Processing Letters 17, 5 (May 2010), 473--476.
[4]
Jerald S. Ault. 2007. Biology and Management of the World Tarpon and Bonefish Fisheries. CRC Press.
[5]
Song Bai, Xiang Bai, Longin Jan Latecki, and Qi Tian. 2017. Multidimensional scaling on multiple input distance matrices. In Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAA'17). 1281--1287.
[6]
Yoshua Bengio, Jean-Francois Paiement, and Pascal Vincent. 2003. Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering. In Advances in Neural Information Processing Systems. MIT Press, 177--184.
[7]
Pratik Biswas, Tzu-Chen Lian, Ta-Chung Wang, and Yinyu Ye. 2006. Semidefinite programming based algorithms for sensor network localization. ACM Transactions on Sensor Networks 2, 2 (May 2006), 188--220.
[8]
Ingwer Borg, Patrick J. F. Groenen, and Patrick Mair. 2012. Applied Multidimensional Scaling. Springer Science 8 Business Media.
[9]
I. Borg and P. Gronen. 2005. Modern Multidimensional Scaling: Theory and Applications (2nd ed.). Springer.
[10]
Giuseppe Bove. 2006. Approaches to asymmetric multidimensional scaling with external information. In Data Analysis, Classification and the Forward Search. Springer, Berlin, 69--76.
[11]
J. Roger Bray and J. T. Curtis. 1957. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecological Monographs (1957).
[12]
Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. 2006a. Efficient computation of isometry-invariant distances between surfaces. SIAM Journal on Scientific Computing 28 (2006), 2--6.
[13]
Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. 2006b. Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching. Proceedings of the National Academy of Sciences of the United States of America 103, 5 (2006), 1168--1172.
[14]
Er M. Bronstein, Michael M. Bronstein, Alfred M. Bruckstein, and Ron Kimmel. 2007. Analysis of two-dimensional non-rigid shapes. International Journal of Computer Vision 78, 1 (2007), 67--88.
[15]
Andreas Buja, Deborah F. Swayne, Michael L. Littman, Nathaniel Dean, Heike Hofmann, and Lisha Chen. 2008. Data visualization with multidimensional scaling. Journal of Computational and Graphical Statistics 17, 2 (2008), 444--472.
[16]
Christopher J. C. Burges. 2005. Geometric methods for feature extraction and dimensional reduction. Data Mining and Knowledge Discovery Handbook (2005).
[17]
Francis Caillez and Pascale Kuntz. 1996. A contribution to the study of the metric and Euclidean structures of dissimilarities. Psychometrika 61, 2 (1996), 241--253.
[18]
E. Cambria, Yangqiu Song, Haixun Wang, and N. Howard. 2014. Semantic multidimensional scaling for open-domain sentiment analysis. IEEE Intelligent Systems 29, 2 (Mar. 2014), 44--51.
[19]
J. D. Carroll and J. J. Chan. 1970. Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition. Psychometrika 35, 3 (1970), 283--319.
[20]
M. L. Carter, S. S. Valenti, and R. F. Goldberg. 2001. Perception of sports photographs: A multidimensional scaling analysis. National Center for Biotechnology Information 92, 3 (2001), 643--652.
[21]
Vijay K. Chaurasiya, Neeraj Jain, and G. C. Nandi. 2014. A novel distance estimation approach for 3D localization in wireless sensor network using multi dimensional scaling. Information Fusion 15, 0 (2014), 5--18.
[22]
Q. Cheng. 2006. Spatial and spatially weighted principal component analysis for images processing. In 2006 IEEE International Symposium on Geoscience and Remote Sensing. 972--975.
[23]
Zeng-Guang Hou Chengan Guo and Zhigang Zeng. 2013. Advances in Neural Networks—International Symposium on Neural Networks. Springer.
[24]
Naohito Chino. 1978. A graphical technique for representing the asymmetric relationships between N objects. Behaviormetrika 5, 5 (1978), 23--44.
[25]
N. Chino. 1980. A unified geometrical interpretation of the MDS techniques for the analysis of asymmetry and related techniques. In Paper Presented at the Symposium on “Asymmetric Multidimensional Scaling” at the Spring Meeting of the Psychometric Society, Iowa.
[26]
Michael Collins, Sanjoy Dasgupta, and Robert E. Schapire. 2001. A generalization of principal component analysis to the exponential family. In Advances in Neural Information Processing Systems.
[27]
A. G. Constantine and J. C. Gower. 1978. Graphical representation of asymmetric matrices. Applied Statistics (1978), 297--304.
[28]
C. H. Coombs. 1964. A Theory of Data. John Wiley 8 Sons, Inc., New York.
[29]
Jose A. Costa, Neal Patwari, and Alfred O. Hero, III. 2006. Distributed weighted-multidimensional scaling for node localization in sensor networks. ACM Transactions on Sensor Networks 2, 1 (Feb. 2006), 39--64.
[30]
Michael A. A. Cox and Trevor F. Cox. 2008. Multidimensional Scaling. Springer. 315--347 pages.
[31]
T. Cox and M. Cox. 2001. Multidimensional Scaling (2nd ed.). Chapman 8 Hall/CRC.
[32]
M. L. Davidson and C. L. Skay. 1991. Multidimensional scaling and factor models of test and item responses. Psychological Bulletin 110, 3 (1991), 551--556.
[33]
C. De Marziani, J. Ureña, A. Hernández, J. J. García, A. Jimenez, M. C. Pérez, F. Álvarez, and J. M. Villadangos. 2009. Relative localization and mapping combining multidimensional scaling and Levenberg-Marquardt optimization. In IEEE International Symposium on Intelligent Signal Processing. 43--47.
[34]
Werner Dubitzky, Martin Granzow, and Daniel P. Berrar. 2007. Fundamentals of Data Mining in Genomics and Proteomics. Springer.
[35]
C. Eckart and G. Young. 1936. The approximation of one matrix by another of lower rank. Psycometrika 1, 3 (Sept. 1936), 211--218.
[36]
D. W. Eggert, A. Lorusso, and R. B. Fisher. 1997. Estimating 3-D rigid body transformations: A comparison of four major algorithms. Machine Vision and Applications 9, 5--6 (Mar. 1997), 272--290.
[37]
A. Elad and R. Kimmel. 2002. Geometric Methods in Bio-Medical Image Processing. Springer-Verlag, Berlin.
[38]
Donald A. Falk, Margaret A. Palmer, Joy B. Zedler et al. 2006. Foundations of Restoration Ecology. Island Press, Washington, DC.
[39]
Peter Filzmoser and Karel Hron. {n. d.}. Outlier detection for compositional data using robust methods. Mathematical Geosciences 40, 3 ({n. d.}), 223--248.
[40]
Robert W. Floyd. 1962. Algorithm 97: Shortest path. Communications of the ACM 5 (June 1962), 345.
[41]
Stephen L. France and J. Douglas Carroll. 2011. Two-way multidimensional scaling: A review. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 41, 5 (2011), 644--661.
[42]
Emden R. Gansner, Yehuda Koren, and Stephen North. 2004. Graph drawing by stress majorization. In International Symposium on Graph Drawing. Springer, 239--250.
[43]
Hugh G. Gauch. 1982. Multivariate Analysis in Community Ecology. Cambridge University Press.
[44]
P. Q. Gerry and M. J. Keough. 2004. Experimental Design and Data Analysis for Biologists. Cambridge University Press.
[45]
Ali Ghodsi. 2006. Dimensionality reduction—A short tutorial. Department of Statistics and Actuarial Science, Univ. of Waterloo, Ontario, Canada 37 (2006), 38.
[46]
G. C. Gilmore, H. Hersh, A. Caramazza, and J. Griffin. 1979. Multidimensional letter similarity derived from recognition errors. Perception and Psychophysics 25, 5 (1979), 425--431.
[47]
J. C. Gower and P. Legendre. 1986. Metric and Eeuclidean properties of dissimilarity coefficients. Journal of Classification 3, 1 (1986), 5--48.
[48]
J. C. Gower. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53, 3 (Dec. 1966), 325--338.
[49]
J. C. Gower. 1971. A general coefficient of similarity and some of its properties. Biometrics 27, 4 (1971).
[50]
John C. Gower. 1977. The analysis of asymmetry and orthogonality. Recent Developments in Statistics (1977), 109--123.
[51]
M. Greenacre. 2005. Weighted metric multidimensional scaling. In New Developments in Classification and Data Analysis. Springer, Berlin, 141--149.
[52]
Michael Greenacre and Raul Primicerio. 2013. Multivariate Analysis of Ecological Data. Rubes Editorial.
[53]
P. J. F. Groenen, W. J. Heiser, and J. J. Meulman. 1997. Global optimization in least squares multidimensional scaling by distance. Journal of Classification 16 (1997), 225--254.
[54]
Louis Guttman. 1968a. A general nonmetric technique for finding the smallest coordinate space for a configuration of points. Psychometrika 33, 4 (1968), 469--506.
[55]
L. Guttman. 1968b. A general nonmetric technique for finding the smallest coordinate space for a configuration of points. Psychometrika 33, 4 (1968), 469--506.
[56]
Edwin Hancock and Mario Vento. 2003. Graph based representation in pattern recognition. In 4th IAPR International Workshop.
[57]
Charles D. Hansen, Min Chen, Christopher R. Johnson, Arie E. Kaufman, and Hans Hagen. 2014. Scientific Visualization: Uncertainty, Multifield, Biomedical, and Scalable Visualization. Springer.
[58]
Mehrdad Honarkhah and Jef Caers. 2010. Stochastic simulation of patterns using distance-based pattern modeling. Mathematical Geosciences 42, 5 (2010), 487--517.
[59]
Michael C. Hout, Megan H. Papesh, and Stephen D. Goldinger. 2013. Multidimensional scaling. Wiley Interdisciplinary Reviews Cognitive Science 4, 1 (2013), 93--103.
[60]
Alan Julian Izenman. 2008. Modern Multivariate Statistical Techniques. Vol. 1. Springer.
[61]
Franc Janzekovic and Tone Novak. 2012. PCA a powerful method for analyze ecological niches. Principal Component Analysis—Multidisciplinary Applications (2012).
[62]
Natalia Jaworska and Angelina Chupetlovska-Anastasova. 2009. A review of multidimensional scaling (MDS) and its utility in various psychological domains. Tutorials in Quantitative Methods for Psychology 5, 1 (2009), 1--10.
[63]
X. Ji and H. Zha. 2004. Sensor positioning in wireless ad-hoc sensor networks with multidimensional scaling. In IEEE International Conference on Computer Communications (INFOCOM), Vol. 4. 2652--2661.
[64]
F. Jourdan and G. Melangon. 2004. Multiscale hybrid MDS. In International Conference on Information Visualisation. 388--393.
[65]
Li jun Peng and Wen wei Li. 2014. The improvement of 3D wireless sensor network nodes localization. In The 26th Chinese Conference on Control and Decision. 4873--4878.
[66]
Tomihisa Kamada and Satoru Kawai. 1989. An algorithm for drawing general undirected graphs. Information Processing Letters 31, 1 (1989), 7--15.
[67]
Hansjörg Klock and Joachim M. Buhmann. 2000. Data visualization by multidimensional scaling: A deterministic annealing approach. Pattern Recognition 33, 4 (2000), 651--669.
[68]
Joseph B. Kruskal. 1956. On the shortest spanning subtree of a graph and the traveling salesman problem. In Proceedings of the American Mathematical Society. 48--50.
[69]
J. B. Kruskal. 1964a. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1 (1964), 1--27.
[70]
Joseph B. Kruskal. 1964b. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1 (1964), 1--27.
[71]
G. Latsoudas and N. D. Sidiropoulos. 2005. A two-stage fastmap-MDS approach for node localization in sensor networks. In 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing. 64--67.
[72]
J. Lawrence, S. Arietta, M. Kazhdan, D. Lepage, and C. O’Hagan. 2011. A user-assisted approach to visualizing multidimensional images. IEEE Transactions on Visualization and Computer Graphics 17, 10 (Oct. 2011), 1487--1498.
[73]
J. de Leeuw. 2005. Shepard Diagram. John Wiley 8 Sons, Ltd.
[74]
J. de Leeuw, J. R. Barra, F. Brodeau, G. Romier, and B. Van Cutsem. 1977. Applications of convex analysis to multidimensional scaling. In Recent Developments in Statistics. 133--146.
[75]
J. de Leeuw and W. Heiser. 1980. Multidimensional Scaling with Restrictions on the Configuration. North-Holland, Amsterdam.
[76]
Boaz Lerner, Hugo Guterman, Mayer Aladjem, Its’hak Dinsteint, and Yitzhak Romem. 1998. On pattern classification with Sammon’s nonlinear mapping an experimental study. Pattern Recognition 31, 4 (1998), 371--381.
[77]
Olivier Lezoray and Leo Grady. 2012. Image Processing and Analysis with Graph Theory and Pratice. Taylor and Francis group.
[78]
S. Li and D. Zhang. 2007. A novel manifold learning algorithm for localization estimation in wireless sensor networks. IEICE Transactions on Communications E90-B, 12 (Dec. 2007), 659--668.
[79]
Ik Soo Lim, P. de Heras Ciechomski, S. Sarni, and D. Thalmann. 2003. Planar arrangement of high-dimensional biomedical data sets by isomap coordinates. In 16th IEEE Symposium on Computer-Based Medical Systems, 2003. 50--55.
[80]
James C. Lingoes and Louis Guttman. 1973. The Guttman-Lingoes Nonmetric Program Series. Mathesis Press.
[81]
A. M. Lopes and J. A. T. Machado. 2014. Analysis of temperature time-series: Embedding dynamics into the MDS method. Communications in Nonlinear Science and Numerical Simulation 19, 4 (2014), 851--871.
[82]
A. M. Lopes and J. A. T. Machado. 2016. Multidimensional scaling analysis of virus diseases. Computer Methods and Programs in Biomedicine 131 (2016), 97--110.
[83]
A. M. Lopes, J. A. T. Machado, C. M. A. Pinto, and A. M. S. F. Galhano. 2013. Fractional dynamics and MDS visualization of earthquake phenomena. Computer and Mathematics with Applications 66, 5 (2013), 647--658.
[84]
A. M. Lopes, J. A. T. Machado, C. M. A. Pinto, and A. M. S. F. Galhano. 2014. Multidimensional scaling visualization of earthquake phenomena. Journal of Seismology 18, 1 (2014), 163--179.
[85]
D. Macagnano and G. T. F. de Abreu. 2013. Algebraic approach for robust localization with heterogeneous information. 12, 10 (Oct. 2013), 5334--5345.
[86]
J. A. T. Machado and A. M. Lopes. 2013. Analysis and visualization of seismic data using mutual information. Entropy 15, 9 (2013), 3892--3909.
[87]
J. A. T. Machado and A. M. Lopes. 2014. Analysis of forest fires by means of pseudo phase plane and multidimensional scaling methods. Mathematical Problems in Engineering (2014), Article ID 575872, 1--8.
[88]
J. A. T. Machado and A. M. Lopes. 2017. Multidimensional scaling analysis of soccer dynamics. Applied Mathematical Modeling 45 (2017), 642--652.
[89]
K. V. Mardia. 1979. Multivariate Analysis. Academic Press. London.
[90]
R. Mathar. 1990. Multidimensional scaling with constraints on the configuration. Journal of Multivariate Analysis 33, 2 (1990), 151--156.
[91]
V. E. McGee. 1966. The multidimensional analysis of elastic distances. British Journal of Mathematical and Statist Psychology 19, 2 (1966), 181--196.
[92]
J. J. Meulman. 1992. The integration of multidimensional scaling and multivariate analysis with optimal transformations. Psychometrika 57, 4 (1992), 539--565.
[93]
David Moore, John Leonard, Daniela Rus, and Seth Teller. 2004. Robust distributed network localization with noisy range measurements. In International Conference on Embedded Networked Sensor Systems. 50--61.
[94]
Antoine Naud and Wlodzislaw Duch. 2000. Interactive data exploration using MDS mapping. In 5th Conference on Neural Networks and Soft Computing. 255--260.
[95]
I. Newton. 1704. Opticks: A Treatise of the Reflexions, Refractions, Inflexions and Colours of Light. Also Two Treatises of the Species and Magnitude of Curvilinear Figures. Smith and Walford, London.
[96]
Vo Dinh Minh Nhat, Nhat Vo, S. Challa, and Sungyoung Lee. 2008. Nonmetric MDS for sensor localization. In 3rd International Symposium on Wireless Pervasive Computing (ISWPC’08). 396--400.
[97]
A. Okada and T. Imaizumi. 1984. Geometric models for asymmetric similarity data. Behaviormetrika 21 (1984), 81--96.
[98]
Akinori Okada and Tadashi Imaizumi. 1987. Nonmetric multidimensional scaling of asymmetric proximities. Behaviormetrika 14, 21 (1987), 81--96.
[99]
Akinori Okada and Tadashi Imaizumi. 1997. Asymmetric multidimensional scaling of two-mode three-way proximities. Journal of Classification 14, 2 (1997), 195--224.
[100]
N. Patwari, A. Hero, III, A. O. Perkins, N. Correal, and R. J. Odea. 2003. Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing 51, 8 (Aug. 2003), 2137--2148.
[101]
Piotr Pawliczek and Witold Dzwinel. 2013. Interactive data mining by using multidimensional scaling. Procedia Computer Science 18 (2013), 40--49.
[102]
N. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller. 2003. Anchor Free Distributed Localization in Sensor Networks. Technical Report MIT-LCS-TR-892.MIT, Cambridge, MA.
[103]
J. L. V. Raalte, B. W. Brewer, D. E. Linder, and N. Delange. 1990. Perceptions of sport-oriented professionals: A multidimensional scaling analysis. Human Kinectic Journals 4, 3 (1990), 228--234.
[104]
J. O. Ramsay. 1982. Some statistical approaches to multidimensional scaling data. Journal of the Royal Statistical Society. Series A 145, 3 (1982), 285--312.
[105]
Shingo Saburi and Naohito Chino. 2008. A maximum likelihood method for an asymmetric MDS model. Computational Statistics 8 Data Analysis 52, 10 (2008), 4673--4684.
[106]
Nasir Saeed and Haewoon Nam. 2014. MDS-LM for wireless sensor networks localization. In IEEE 79th Vehicular Technology Conference. 1--6.
[107]
Nasir Saeed and Haewoon Nam. 2015. Robust multidimensional scaling for cognitive radio network localization. IEEE Transactions on Vehicular Technology 64, 9 (Sept. 2015), 4056--4062.
[108]
Nasir Saeed and Haewoon Nam. 2016. Cluster based multidimensional scaling for irregular cognitive radio networks localization. IEEE Transactions on Signal Processing 64, 10 (Feb. 2016), 2649--2659.
[109]
Y. Sahillioglu and Y. Yemez. 2011. Coarse-to-fine combinatorial matching for dense isometric shape correspondence. Computer Graphics Forum 30, 5 (2011), 1461--1470.
[110]
T. Saito. 1983. A method of multidimensional scaling to obtain a sphere configuration. Hokkaido Behavioral Science Report, Series-M 4 (1983).
[111]
Takayuki Saito. 1986. Multidimensional scaling to explore complex aspects in dissimilarity judgment. Behaviormetrika 13, 20 (1986), 35--62.
[112]
Takayuki Saito. 1988. Cluster analysis based on nonparametric tests.Classification and Related Methods of Data Analysis, H. H. Bock, (Ed.), North Holland, Amsterdam, 257--266.
[113]
J. W. Sammon. 1969. A nonlinear mapping for data structure analysis. IEEE Transactions on Computers 18, 5 (May 1969), 401--409.
[114]
Y. Sato. 1989. On distance representation using asymmetric metric function. In 17th Annual Meeting of the Behaviormetric Society of Japan (in Japanese).
[115]
John A. Schinka and Wayne F. Velicer. 2013. Handbook of Psychology. Vol. 2. John Wiley 8 Sons, Ltd.
[116]
Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz. 2003. Localization from mere connectivity. In ACM MobiHoc. 201--212.
[117]
Q. Q. Shi, H. Huo, T. Fang, and R. D. Li. 2007. Using steepest descent method to refine the node positions in wireless sensor networks. In IET Conference on Wireless, Mobile and Sensor Networks. 1055--1058.
[118]
Minhan Shon, Wook Choi, and Hyunseung Choo. 2010. A cluster-based MDS scheme for range-free localization in wireless sensor networks. In International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. 42--47.
[119]
N. Solaro. 2010. Sensitivity analysis and robust approach in multidimensional scaling: An evaluation of customer satisfaction. Quality Technology and Quantitative Management 7, 2 (2010).
[120]
N. Solaro. 2011. Multidimensional Scaling. John Wiley 8 Sons, Ltd., pp. 357--390s.
[121]
Biljana Stojkoska, Danco Davcev, and Andrea Kulakov. 2008. Cluster-based MDS algorithm for nodes localization in wireless sensor networks with irregular topologies. In 5th International Conference on Soft Computing As Transdisciplinary Science and Technology. 384--389.
[122]
B. R. Stojkoska. 2013. Improved MDS-MAP algorithm for nodes localization in 3D wireless sensor networks. In Annual South-East European Doctoral Student Conference. 340--348.
[123]
B. R. Stojkoska. 2014. Nodes localization in 3D wireless sensor networks based on multidimensional scaling algorithm. International Scholarly Research Notices 2014, 2014 (Jun. 2014), 1--10.
[124]
Ryszard Tadeusiewicz, Lotfi A. Zadeh, R. Leszek, Rafal Scherer, and Jacek M. Zurada. 2010. Lecture Notes in Artificial Intelligence. Cambridge University Press.
[125]
Yoshio Takane. 1981. Multidimensional successive categories scaling: A maximum likelihood method. Psychometrika 46, 1 (1981), 9--28.
[126]
Y. Takane, F. W. Young, and J. D. Leeuw. 1977. Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features. Psychometrika 42, 1 (1977), 7--67.
[127]
P. Tan, M. Steinbach, and V. Kumar. 2005. Introduction to Data Mining. Addison-Wesley.
[128]
Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. 2000. A global geometric framework for nonlinear dimensionality reduction. Science 290, 5500 (2000), 2319--2323.
[129]
Waldo Tobler. 1975. Spatial interaction patterns. J. of Environmental Systems 4, 4 (1975), 271--301.
[130]
W. S. Torgerson. 1952. Multidimensional scaling: I. Theory and method. Psycometrika 17, 4 (Dec. 1952), 401--419.
[131]
Amos Tversky. 1977. Features of similarity.Psychological Review 84, 4 (1977), 327.
[132]
Amos Tversky and Itamar Gati. 1978. Studies of similarity. Cognition and Categorization 1, 1978 (1978), 79--98.
[133]
Jengnan Tzeng, Henry H. S. Lu, and Wen-Hsiung Li. 2008. Multidimensional scaling for large genomic data sets. BMC Bioinformatics 9, 179 (2008), 1--17.
[134]
Thomas Villmann, Ersebet Merényi, and Udo Seiffert. 2008. Machine learning approaches and pattern recognition for spectral data. In European Symposium on Artificial Neural Networks—Advances in Computational Intelligence and Learning Bruges (ESANN’08).
[135]
V. Vivekanandan and V. W. S. Wong. 2006. Ordinal MDS-based localization for wireless sensor networks. In IEEE 64th Vehicular Technology Conference. 1--5.
[136]
Jörg A. Walter and Helge Ritter. 2002. On interactive visualization of high-dimensional data using the hyperbolic plane. In 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 123--132.
[137]
Andrew R. Webb. 2003. Statistical Pattern Recognition. John Wiley & Sons.
[138]
David G. Weeks and P. M. Bentler. 1982. Restricted multidimensional scaling models for asymmetric proximities. Psychometrika 47, 2 (1982), 201--208.
[139]
Mingzhu Wei, R. Aragues, C. Sagues, and G. C. Calafiore. 2015. Noisy range network localization based on distributed multidimensional scaling. IEEE Sensors Journal 15, 3 (Mar. 2015), 1872--1883.
[140]
Wei Xin, Wang Quandi, Yang Chenghe, and Yang Yongming. 2009. A three-dimensional node localization algorithm of high-precision in wireless sensor network. In IEEE International Conference on Industrial Technology (ICIT’09). 1--5.
[141]
Hiroyuki Yamamoto, Tamaki Fujimori, Hajime Sato, Gen Ishikawa, Kenjiro Kami, and Yoshiaki Ohashi. 2014. Statistical hypothesis testing of factor loading in principal component analysis and its application to metabolite set enrichment analysis. BMC Bioinformatics 15, 1 (2014), 1--9.
[142]
Ming-Hsuan Yang. 2002. Extended isomap for classification. In 16th International Conference on Pattern Recognition, 2002, Vol. 3. 615--618.
[143]
Y. H. Yin, J. Y. Xie, Li Da Xu, and Hao Chen. 2012. Imaginal thinking-based human-machine design methodology for the configuration of reconfigurable machine tools. IEEE Transactions on Industrial Informatics 8, 3 (Aug. 2012), 659--668.
[144]
Forrest W. Young, Yoshio Takane, and Rostyslaw Lewyckyj. 1978. ALSCAL: A nonmetric multidimensional scaling program with several individual-differences options. Behavior Research Methods and Instrumentation 10, 3 (1978), 451--453.
[145]
Forrest W. Young. 1975. An asymmetric Euclidean model for multi-process asymmetric data. In Paper Presented at US-Japan Seminar on MDS.
[146]
Forrest W. Young. 2013. Multidimensional Scaling History, Theory and Applications. LEA.
[147]
G. Young and A. S. Householder. 1938. Discussion of a set of points in terms of their mutual distances. Psycometrika 3, 1 (Mar. 1938), 19--22.
[148]
S. D. Young, B. D. Adelstein, and S. R. Ellis. 2007. Calculus of nonrigid surfaces for geometry and texture manipulation. IEEE Transactions on Visualization and Computer Graphics 13, 5 (Sept. 2007), 902--913.
[149]
Gwo-Jong Yu and Shao-Chun Wang. 2008. A hierarchical MDS-based localization algorithm for wireless sensor networks. In International Conference on Advanced Information Networking and Applications. 748--754.
[150]
Gang Zhang and Liang-Lun Cheng. 2010. Semi-supervised classification with metric learning. In 2nd WRI Global Congress on Intelligent Systems (GCIS’10), Vol. 3. 123--126.
[151]
Jin Zhang. 2007. Visualization for Information Retrieval. Cambridge University Press.
[152]
S. Zhu and Z. Ding. 2012. Bridging gap between multi-dimensional scalingbased and optimum network localisation via efficient refinement. IET Signal Processing 6, 2 (Apr. 2012), 132--142.
[153]
Alain F. Zuur, Elena N. Leno, and Chris S. Elphick. 2009. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution (2009).

Cited By

View all
  • (2025)On many-objective feature selection and the need for interpretabilityExpert Systems with Applications10.1016/j.eswa.2024.126191267(126191)Online publication date: Apr-2025
  • (2024)TÜRKİYE’DEKİ İLLERİN SAĞLIK GÖSTERGELERİNİN ÇOK BOYUTLU ÖLÇEKLEME ANALİZİYLE DEĞERLENDİRİLMESİAnadolu Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi10.53443/anadoluibfd.141612825:3(334-346)Online publication date: 29-Sep-2024
  • (2024)War, Torture and Trauma in Preadolescents from Gaza Strip. Two Different Modalities of PTSDAnuario de Psicología Jurídica10.5093/apj2024a634:1(1-12)Online publication date: 15-Feb-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 51, Issue 3
May 2019
796 pages
ISSN:0360-0300
EISSN:1557-7341
DOI:10.1145/3212709
  • Editor:
  • Sartaj Sahni
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 23 May 2018
Accepted: 01 January 2018
Revised: 01 May 2017
Received: 01 April 2016
Published in CSUR Volume 51, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Multidimensional scaling
  2. dissimilarity
  3. multivariate
  4. similarity
  5. spatial map

Qualifiers

  • Survey
  • Research
  • Refereed

Funding Sources

  • Basic Science Research Program through the National Research Foundation (NRF), South Korea,

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)378
  • Downloads (Last 6 weeks)40
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)On many-objective feature selection and the need for interpretabilityExpert Systems with Applications10.1016/j.eswa.2024.126191267(126191)Online publication date: Apr-2025
  • (2024)TÜRKİYE’DEKİ İLLERİN SAĞLIK GÖSTERGELERİNİN ÇOK BOYUTLU ÖLÇEKLEME ANALİZİYLE DEĞERLENDİRİLMESİAnadolu Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi10.53443/anadoluibfd.141612825:3(334-346)Online publication date: 29-Sep-2024
  • (2024)War, Torture and Trauma in Preadolescents from Gaza Strip. Two Different Modalities of PTSDAnuario de Psicología Jurídica10.5093/apj2024a634:1(1-12)Online publication date: 15-Feb-2024
  • (2024)Evaluating Active Labour Market Policies in Türkiye by Regions via Multidimensional Scaling and Clustering AnalysisCumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi10.37880/cumuiibf.1509055Online publication date: 29-Oct-2024
  • (2024)Metric-Independent Mitigation of Unpredefined Bias in Machine ClassificationIntelligent Computing10.34133/icomputing.00833Online publication date: 8-Apr-2024
  • (2024)Classification, Regression, and Survival Rule Induction with Complex and M-of-N Elementary ConditionsMachine Learning and Knowledge Extraction10.3390/make60100266:1(554-579)Online publication date: 5-Mar-2024
  • (2024)Comprehensive Assessment of Slovakian Hospitals Using Financial and Non-Financial Criteria in the COVID-19 ContextEconomies10.3390/economies1209025512:9(255)Online publication date: 21-Sep-2024
  • (2024)A New and Effective Classification Method for Complex Time Series Based on Information MeasureFluctuation and Noise Letters10.1142/S021947752450032923:04Online publication date: 23-Feb-2024
  • (2024)On Combined Visual Cluster and Set Analysis2024 IEEE Visualization and Visual Analytics (VIS)10.1109/VIS55277.2024.00034(131-135)Online publication date: 13-Oct-2024
  • (2024)Personalized Language Model Selection Through Gamified Elicitation of Contrastive Concept PreferencesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.329690530:8(5449-5465)Online publication date: 1-Aug-2024
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media