Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3087604.3087659acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Algorithms for Structured Linear Systems Solving and Their Implementation

Published: 23 July 2017 Publication History

Abstract

There exists a vast literature dedicated to algorithms for structured matrices, but relatively few descriptions of actual implementations and their practical performance in symbolic computation. In this paper, we consider the problem of solving Cauchy-like systems, and its application to mosaic Toeplitz systems, in two contexts: first in the unit cost model (which is a good model for computations over finite fields), then over Q. We introduce new variants of previous algorithms and describe an implementation of these techniques and its practical behavior. We pay a special attention to particular cases such as the computation of algebraic approximants.

References

[1]
A. Arnold and E. Schost. A Truncated Fourier Transform middle product. ACM Commun. Comput. Algebra, 48(3/4):98--99, 2015.
[2]
J. Berthomieu and R. Lebreton. Relaxed p-adic Hensel lifting for algebraic systems. In ISSAC'12, pages 59--66. ACM, 2012.
[3]
R. R. Bitmead and B. D. O. Anderson. Asymptotically fast solution of Toeplitz and related systems of linear equations. Linear Algebra Appl., 34:103--116, 1980.
[4]
L. I. Bluestein. A linear filtering approach to the computation of the discrete Fourier transform. IEEE Trans. Electroacoustics, AU-18:451--455, 1970.
[5]
A. Bostan, M. F. I. Chowdhury, R. Lebreton, B. Salvy, and E. Schost. Power series solutions of singular (q)-differential equations. In ISSAC'12, pages 107--114. ACM, 2012.
[6]
A. Bostan, F. Chyzak, M. Giusti, R. Lebreton, G. Lecerf, B. Salvy, and E. Schost. Algorithmes efficaces en calcul formel. hal.archives-ouvertes.fr/AECF/, 2017.
[7]
A. Bostan, F. Chyzak, F. Ollivier, B. Salvy, S. Sedoglavic, and E. Schost. Fast computation of power series solutions of systems of differential equations. In Symposium on Discrete Algorithms, SODA'07, pages 1012--1021. ACM-SIAM, 2007.
[8]
A. Bostan, C.-P. Jeannerod, C. Mouilleron, and E. Schost. On matrices with displacement structure: generalized operators and faster algorithms. 2016.
[9]
A. Bostan, C.-P. Jeannerod, and E. Schost. Solving structured linear systems with large displacement rank. Theor. Comput. Sci., 407(1):155--181, 2008.
[10]
A. Bostan, G. Lecerf, and E. Schost. Tellegen's principle into practice. In ISSAC'03, pages 37--44. ACM, 2003.
[11]
A. Bostan and E. Schost. Polynomial evaluation and interpolation on special sets of points. J. Complexity, 21(4):420--446, 2005.
[12]
A. Bostan and E Schost. Fast algorithms for differential equations in positive characteristic. In ISSAC'09, pages 47--54. ACM, 2009.
[13]
B. Boyer and J.-G. Dumas. Matrix multiplication over word-size modular rings using approximate formulas. ACM TOMS, 42(3):20:1--20:12, 2016.
[14]
D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta Informatica, 28(7):693--701, 1991.
[15]
J.-P. Cardinal. On a property of Cauchy-like matrices. C. R. Acad. Sci. Paris Serie I, 388:1089--1093, 1999.
[16]
Z. Chen and V. Y. Pan. An efficient solution for Cauchy-like systems of equations. Computers Math. Applic., 48:529--537, 2004.
[17]
D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation, 9(3):251--280, March 1990.
[18]
J. Dixon. Exact solution of linear equations using p-adic expansions. Numer. Math., 40:137--141, 1982.
[19]
J.-G. Dumas, P. Giorgi, and C. Pernet. Dense linear algebra over word-size prime fields: The FFLAS and FFPACK packages. ACM TOMS, 35(3):19:1--19:42, 2008.
[20]
J. Durbin. The fitting of time series models. Rev. Inst. Int. Stat., 28:233--243, 1960.
[21]
FFLAS-FFPACK-Team. FFLAS-FFPACK: Finite Field Linear Algebra Subroutines / Package, v2.2.2 edition, 2016. http://github.com/linbox-team/fflas-ffpack.
[22]
M. Furer. Faster Integer Multiplication. In STOC'07, pages 57--66, 2007.
[23]
J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, Cambridge, third edition, 2013.
[24]
I. Gohberg, T. Kailath, and V. Olshevsky. Fast Gaussian elimination with partial pivoting for matrices with displacement structure. Math. Comp., 64(212):1557--1576, 1995.
[25]
G. Hanrot, M. Quercia, and P. Zimmermann. The Middle Product Algorithm, I. Appl. Algebra Engrg. Comm. Comp., 14(6):415--438, 2004.
[26]
G. Heinig and T. Amdeberhan. On the inverses of Hankel and Toeplitz mosaic matrices. In Seminar Analysis (Berlin, 1987/1988), pages 53--65. 1988.
[27]
T. Huckle. Implementation of a superfast algorithm for symmetric positive definite linear equations of displacement rank 2. volume 2296 of Proceedings of the SPIE, pages 494--503. 1994.
[28]
O. H Ibarra, S. Moran, and R. Hui. A generalization of the fast LUP matrix decomposition algorithm and applications. J. Algorithms, 3(1):45--56, 1982.
[29]
C.-P. Jeannerod and C. Mouilleron. Computing specified generators of structured matrix inverses. In ISSAC'10, pages 281--288. ACM, 2010.
[30]
T. Kailath, S. Y. Kung, and M. Morf. Displacement ranks of matrices and linear equations. J. Math. Anal. Appl., 68(2):395--407, 1979.
[31]
T. Kailath and A. H. Sayed. Fast Reliable Algorithms for Matrices with Structure. SIAM, 1999.
[32]
E. Kaltofen. Asymptotically fast solution of Toeplitz-like singular linear systems. In ISSAC'94, pages 297--304. ACM, 1994.
[33]
F. Le Gall. Powers of tensors and fast matrix multiplication. In ISSAC'14, pages 296--303. ACM, 2014.
[34]
R. Lebreton. Contributions to relaxed algorithms and polynomial system solving. PhD thesis, Ecole Polytechnique, Palaiseau, France, 2012.
[35]
N. Levinson. The Wiener RMS error criterion in filter design and prediction. J. Math. Phys., 25:261--278, 1947.
[36]
M. Morf. Doubling algorithms for toeplitz and related equations. In IEEE Conference on Acoustics, Speech, and Signal Processing, pages 954--959, 1980.
[37]
C. Mouilleron. Algorithmes rapides pour la resolution de problemes algebriques structures. Master's thesis, ENS Lyon, 2008.
[38]
M. Nusken and M. Ziegler. Fast multipoint evaluation of bivariate polynomials. In ESA 2004, number 3222 in LNCS, pages 544--555. Springer, 2004.
[39]
V. Olshevsky and V. Y. Pan. A unified superfast algorithm for boundary rational tangential interpolation problems and for inversion and factorization of dense structured matrices. In Proc. 39th IEEE FOCS, pages 192--201, 1998.
[40]
V. Y. Pan. On computations with dense structured matrices. Math. Comp., 55(191):179--190, 1990.
[41]
V. Y. Pan. Parametrization of Newton's iteration for computations with structured matrices and applications. Computers Math. Applic., 24(3):61--75, 1992.
[42]
V. Y. Pan. Structured Matrices and Polynomials. Birkhauser Boston Inc., 2001.
[43]
V. Y. Pan, B. Murphy, and R. E. Rosholt. Nearly optimal symbolic numerical algorithms for structured integer matrices and polynomials. In SNC'09, pages 105--114. ACM, 2009.
[44]
V. Y. Pan, Brian J. Murphy, and R. E. Rosholt. Unified nearly optimal algorithms for structured integer matrices. In Numerical Methods for Structured Matrices and Applications, pages 359--375. Birkhauser, 2010.
[45]
V. Y. Pan and A. Zheng. Superfast algorithms for Cauchy-like matrix computations and extensions. Linear Algebra Appl., 310:83--108, 2000.
[46]
A. Schonhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7:281--292, 1971.
[47]
H. Sexton, M. Shensa, and J. Speiser. Remark on a displacement-rank inversion method for Toeplitz systems. Linear Algebra Appl., 45:127--130, 1982.
[48]
V. Shoup. NTL: A library for doing number theory. http://www.shoup.net.
[49]
V. Shoup. A new polynomial factorization algorithm and its implementation. J. Symb. Comp., 20(4):363--397, 1995.
[50]
W. F. Trench. An algorithm for the inversion of finite Toeplitz matrices. J. Soc. Indust. Appl. Math., 12:515--522, 1964.

Cited By

View all
  • (2019)Implementations of Efficient Univariate Polynomial Matrix Algorithms and Application to Bivariate ResultantsProceedings of the 2019 International Symposium on Symbolic and Algebraic Computation10.1145/3326229.3326272(235-242)Online publication date: 8-Jul-2019
  • (2018)Fast matrix multiplication and its algebraic neighbourhoodSbornik: Mathematics10.1070/SM8833208:11(1661-1704)Online publication date: 29-Jan-2018
  • (2017)Быстрое умножение матриц и смежные вопросы алгебрыFast matrix multiplication and its algebraic neighbourhoodМатематический сборникMatematicheskii Sbornik10.4213/sm8833208:11(90-138)Online publication date: 27-Oct-2017

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
ISSAC '17: Proceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation
July 2017
466 pages
ISBN:9781450350648
DOI:10.1145/3087604
Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 23 July 2017

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. algorithms
  2. implementation
  3. structured matrices

Qualifiers

  • Research-article

Funding Sources

  • Eric Schost

Conference

ISSAC '17

Acceptance Rates

Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 04 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2019)Implementations of Efficient Univariate Polynomial Matrix Algorithms and Application to Bivariate ResultantsProceedings of the 2019 International Symposium on Symbolic and Algebraic Computation10.1145/3326229.3326272(235-242)Online publication date: 8-Jul-2019
  • (2018)Fast matrix multiplication and its algebraic neighbourhoodSbornik: Mathematics10.1070/SM8833208:11(1661-1704)Online publication date: 29-Jan-2018
  • (2017)Быстрое умножение матриц и смежные вопросы алгебрыFast matrix multiplication and its algebraic neighbourhoodМатематический сборникMatematicheskii Sbornik10.4213/sm8833208:11(90-138)Online publication date: 27-Oct-2017

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media