Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3663741.3664786acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Technological and Research Challenges in Data Engineering for Sustainable Agriculture

Published: 09 June 2024 Publication History

Abstract

This paper presents a concise exploration of the evolving landscape of sustainable agriculture through the lens of data engineering. The aim is to highlight the most important challenges in the field and sketch ideas for how to address them. This position paper delves into key research challenges such as multi-modal data integration, data quality assurance, network optimisation and edge versus fog data processing strategies. Additionally, it emphasises the significance of performance enhancement in driving innovation within sustainable agriculture. By addressing these challenges and following the proposed visionary approaches for future research endeavours, we claim that data engineering will serve as a catalyst for advancing sustainable agriculture practices.

References

[1]
G André, B Bachelet, P Battistoni, A Belhassena, S Bimonte, C Cariou, F Chabot, G Chalhoub, A Couvent, G Garani, J Laneurit, R Moussa, K Oikonomou, I Sammour, M Sebillo, M Vilela Souza, N Tricot, and R Wrembel. 2023. LambdAgrIoT: a new architecture for agricultural autonomous robots’ scheduling: from design to experiments. Clust. Comput. 26, 5 (2023), 2993–3015.
[2]
Florence Le Ber Aurélie Leborgne, Ezriel Steinberg and Stella Marc-Zwecker. 2024. Representation and Analysis of the Evolution of Agricultural Territories by a Spatio-temporal Graph. In Geographic Data Imperfection 2: Use Cases.Wiley.
[3]
Mohamed Bakli, Mahmoud Sakr, and Taysir Hassan A. Soliman. 2019. HadoopTrajectory: a Hadoop spatiotemporal data processing extension. Journal of Geographical Systems (2019), 1–25.
[4]
Mohamed Bakli, Mahmoud Sakr, and Esteban Zimanyi. 2019. Distributed moving object data management in MobilityDB. In Proceedings of the 8th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data. 1–10.
[5]
Mohamed Bakli, Mahmoud Sakr, and Esteban Zimányi. 2020. Distributed spatiotemporal trajectory query processing in SQL. In Proceedings of the 28th International Conference on Advances in Geographic Information Systems. 87–98.
[6]
V Barrile, S Simonetti, R Citroni, A Fotia, and G Bilotta. 2022. Experimenting Agriculture 4.0 with Sensors: A Data Fusion Approach between Remote Sensing, UAVs and Self-Driving Tractors. Sensors 22, 20 (2022).
[7]
S Bimonte, H Badir, P Battistoni, H Bazza, A Belhassena, C Cariou, G Chalhoub, J-C Corrales, A Couvent, J Laneurit, R Moussa, J E Plazas, M Sebillo, and N Tricot. 2023. Data-centric UML profile for agroecology applications: Agricultural autonomous robots monitoring case study. Comput. Sci. Inf. Syst. 20, 1 (2023), 459–489.
[8]
Grazyna Brzykcy, Jacek Martinek, Adam Meissner, and Piotr Skrzypczynski. 2001. Multi-agent blackboard architecture for a mobile robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2369–2374.
[9]
Ruth Cordova-Cardenas, Luis Emmi, and Pablo Gonzalez-de Santos. 2023. Enabling Autonomous Navigation on the Farm: A Mission Planner for Agricultural Tasks. Agriculture 13, 12 (2023).
[10]
Ania Cravero, Sebastián Pardo, Patricio Galeas, Julio López Fenner, and Mónica Caniupán. 2022. Data Type and Data Sources for Agricultural Big Data and Machine Learning. Sustainability 14, 23 (2022).
[11]
Haizhou Ding, Baohua Zhang, Jun Zhou, Yaxuan Yan, Guangzhao Tian, and Baoxing Gu. 2022. Recent developments and applications of simultaneous localization and mapping in agriculture. J. Field Robotics 39, 6 (2022), 956–983.
[12]
Miguel-Angel Sicilia Elena García-Barriocanal and Salvador Sánchez-Alonso. 2013. Providing semantic metadata to online learning resources on sustainable agriculture and farming: combining values and technical knowledge. Interactive Learning Environments 21, 3 (2013), 301–318.
[13]
Serap Ergun, Ibrahim Sammour, and Gerard Chalhoub. 2023. A survey on how network simulators serve reinforcement learning in wireless networks. Computer Networks 234 (2023), 109934.
[14]
Food and Agriculture Organization of the United Nations. 2014. Building a common vision for sustainable food and agriculture. https://www.fao.org/cofi/46037-0799fded181eabdcf681755783a3601b.pdf
[15]
Görkem Giray and Cagatay Catal. 2021. Design of a Data Management Reference Architecture for Sustainable Agriculture. Sustainability 13, 13 (2021).
[16]
Anat Goldstein, Lior Fink, and Gilad Ravid. 2021. A Framework for Evaluating Agricultural Ontologies. Sustainability 13, 11 (2021).
[17]
Gunjan Gupta, Robert Van Zyl, and Vipin Balyan. 2022. Evaluation of LoRa nodes for long-range communication. Nonlinear Engineering 11, 1 (2022), 615–619.
[18]
Clément Iphar, Benjamin Coste, Aldo Napoli, Cyril Ray, and Rodolphe Devillers. 2019. Integrity and trust of geographic information. In Geographic Data Imperfection 1: From Theory to Applications., Eric Desjardin et François Pinet Mireille Batton-Hubert (Ed.). Wiley/ISTE Editions, Chapter 4, 28 p.
[19]
Sandro Bimonte Kamal Boulil and Francois Pinet. 2014. Spatial OLAP integrity constraints: From UML-based specification to automatic implementation: Application to energetic data in agriculture. Journal of Decision Systems 23, 4 (2014).
[20]
Andreas Kamilaris, Feng Gao, Francesc X. Prenafeta-Boldu, and Muhammad Intizar Ali. 2016. Agri-IoT: A semantic framework for Internet of Things-enabled smart farming applications. In IEEE 3rd World Forum on Internet of Things (WF-IoT). 442–447.
[21]
Loukas Kavouras, Konstantinos Tsopelas, Giorgos Giannopoulos, Dimitris Sacharidis, Eleni Psaroudaki, Nikolaos Theologitis, Dimitrios Rontogiannis, Dimitris Fotakis, and Ioannis Z. Emiris. 2023. Fairness Aware Counterfactuals for Subgroups. In NeurIPS.
[22]
Timo Korthals, Mikkel Kragh, Peter Christiansen, Henrik Karstoft, Rasmus N. Jørgensen, and Ulrich Rückert. 2018. Multi-Modal Detection and Mapping of Static and Dynamic Obstacles in Agriculture for Process Evaluation. Frontiers in Robotics and AI 5 (2018).
[23]
Nikolaos Koutroumanis and Christos Doulkeridis. 2021. Scalable Spatio-temporal Indexing and Querying over a Document-oriented NoSQL Store. In International Conference on Extending Database Technology.
[24]
Nikolaos Koutroumanis, Panagiotis Nikitopoulos, Akrivi Vlachou, and Christos Doulkeridis. 2019. NoDA: Unified NoSQL Data Access Operators for Mobility Data. In Proceedings of the 16th International Symposium on Spatial and Temporal Databases (Vienna, Austria) (SSTD ’19). 174–177.
[25]
B. Lauga, B. Balvay, L. Topart, J. Leclaire, A. Clenet, F. Brun, F. Pinet, C. Roussey, and M. Sine. 2019. MULTIPASS: Managing the consents of access to farm data in a chain of trust to make new services emerge for farmers. In Conference of the European Federation for Information Technology in Agriculture, Food and the Environment.
[26]
Yi-Bing Lin, Whai-En Chen, and Ted C.-Y. Chang. 2023. Moving from Cloud to Fog/Edge: The Smart Agriculture Experience. IEEE Communications Magazine 61, 12 (2023), 86–92.
[27]
Djakhdjakha Lynda, Farou Brahim, Seridi Hamid, and Cissé Hamadoun. 2023. Towards a semantic structure for classifying IoT agriculture sensor datasets : An approach based on machine learning and web semantic technologies. Journal of King Saud University - Computer and Information Sciences 35, 8 (2023), 101700.
[28]
Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William Woodall. 2022. Robot Operating System 2: Design, architecture, and uses in the wild. Science Robotics 7, 66 (May 2022).
[29]
Federico Maffezzoli, Marco Ardolino, Andrea Bacchetti, Marco Perona, and Filippo Renga. 2022. Agriculture 4.0: A systematic literature review on the paradigm, technologies and benefits. Futures 142 (2022), 102998.
[30]
Md. Suruj Mia, Ryoya Tanabe, Luthfan Nur Habibi, Naoyuki Hashimoto, Koki Homma, Masayasu Maki, Tsutomu Matsui, and Takashi S. T. Tanaka. 2023. Multimodal Deep Learning for Rice Yield Prediction Using UAV-Based Multispectral Imagery and Weather Data. Remote Sensing 15, 10 (2023).
[31]
Francois Pinet Mireille Batton-Hubert and Andre Miralles. 2024. Implementation and computation of fuzzy geographic objects in agriculture. In Geographic Data Imperfection 2: Use Cases.Wiley.
[32]
Mohamed Mokbel, Mahmoud Sakr, Li Xiong, Andreas Züfle, Jussara Almeida, Taylor Anderson, Walid Aref, Gennady Andrienko, Natalia Andrienko, Yang Cao, 2022. Mobility data science (dagstuhl seminar 22021). In Dagstuhl reports, Vol. 12. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.
[33]
Mohamed Mokbel, Mahmoud Sakr, Li Xiong, Andreas Züfle, Jussara Almeida, Walid Aref, Gennady Andrienko, Natalia Andrienko, Yang Cao, Sanjay Chawla, 2023. Towards mobility data science (vision paper). arXiv preprint arXiv:2307.05717 (2023).
[34]
Mateusz Nijak, Piotr Skrzypczyński, Krzysztof Ćwian, Michał Zawada, Sebastian Szymczyk, and Jacek Wojciechowski. 2024. On the Importance of Precise Positioning in Robotised Agriculture. Remote Sensing 16, 6 (2024).
[35]
Kvitoslava Obelovska, Olga Panova, and Vincent Karovič. 2021. Performance Analysis of Wireless Local Area Network for a High-/Low-Priority Traffic Ratio at Different Numbers of Access Categories. Symmetry 13, 4 (2021).
[36]
M.J. O’Grady, D. Langton, and G.M.P. O’Hare. 2019. Edge computing: A tractable model for smart agriculture?Artificial Intelligence in Agriculture 3 (2019), 42–51.
[37]
ISO/TMB Strategic Advisory Group on Smart Farming. 2023. Final report with Recommendations. https://www.iso.org/smart-farming/smart-farming-data-driven
[38]
Koji Oshima, Daisuke Yamamoto, Atsuhiro Yumoto, Song-Ju Kim, Yusuke Ito, and Mikio Hasegawa. 2022. Online machine learning algorithms to optimize performances of complex wireless communication systems. Mathematical Biosciences and Engineering 19, 2 (2022), 2056–2094.
[39]
El Mehdi Ouafiq, R. Saadane, A. Chehri, and M. Wahbi. 2022. Data Lake Conception for Smart Farming: A Data Migration Strategy for Big Data Analytics. In Human Centred Intelligent Systems, Alfred Zimmermann, Robert J. Howlett, and Lakhmi C. Jain (Eds.). Springer Nature Singapore, Singapore, 191–201.
[40]
F Pinet and C De Runz. 2019. Representing Diagrams of Imperfect Geographic Objects. In Geographic Data Imperfection 1: From Theory to Applications.Wiley.
[41]
Rehan Qureshi, Syed Haris Mehboob, and Muhammad Aamir. 2021. Sustainable Green Fog Computing for Smart Agriculture. Wirel. Pers. Commun. 121, 2 (2021).
[42]
Prem Rajak, Abhratanu Ganguly, Satadal Adhikary, and Suchandra Bhattacharya. 2023. Internet of Things and smart sensors in agriculture: Scopes and challenges. Journal of Agriculture and Food Research 14 (2023), 100776.
[43]
Mahesh Ranaweera and Qusay H. Mahmoud. 2021. Virtual to Real-World Transfer Learning: A Systematic Review. Electronics 10, 12 (2021).
[44]
O Rozenstein, Y. Cohen, V. Alchanatis, K. Behrendt, J Bonfil, G. Eshel, A. Harari, W. Harris, I. Klapp, Y. Laor, R. Linker, K. Paz, S. Peets, Y. Rutter, Y. Salzer, and J. Lowenberg-DeBoer. 2023. Data-driven agriculture and sustainable farming: friends or foes?Precision Agriculture 25 (08 2023), 520–531.
[45]
Philip Russom. 2017. Data Lakes: Purposes, Practices, Patterns, and Platforms. TDWI white paper.
[46]
A Puricelli S Servigne and R Laurini. 2000. A Methodology for Spatial Consistency Improvement of Geographic Databases. GeoInformatica 4, 1 (2000), 7–34.
[47]
Dimitris Sacharidis, Giorgos Giannopoulos, George Papastefanatos, and Kostas Stefanidis. 2023. Auditing for Spatial Fairness. In EDBT. OpenProceedings.org.
[48]
Mahmoud Sakr. 2018. A data model and algorithms for a spatial data marketplace. International Journal of Geographical Information Science 32, 11 (2018), 2140–2168.
[49]
M Sakr and G Merten. 2023. Brussels Mobility Twin. In Proceedings of the 31st ACM Int’l. Conf. on Advances in Geographic Information Systems. 1–4.
[50]
Mahmoud Sakr, Cyril Ray, and Chiara Renso. 2022. Big mobility data analytics: recent advances and open problems. GeoInformatica 26, 4 (2022), 541–549.
[51]
Ibrahim Sammour and Gerard Chalhoub. 2022. Application-Level Data Rate Adaptation in Wi-Fi Networks Using Deep Reinforcement Learning. In 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall). 1–7.
[52]
Ibrahim Sammour, Gerard Chalhoub, and Gil De Sousa. 2023. Capacity aware Wi-Fi networks deployment. Annals of Telecommunications (2023).
[53]
D. Sathya, R. Thangamani, and B. Saravana Balaji. 2024. The Revolution of Edge Computing in Smart Farming. Springer Nature Switzerland, Cham, 351–389.
[54]
Norman Siebrecht. 2020. Sustainable Agriculture and Its Implementation Gap—Overcoming Obstacles to Implementation. Sustainability 12, 9 (2020).
[55]
D Tiozzo Fasiolo, L Scalera, E Maset, and A Gasparetto. 2023. Towards autonomous mapping in agriculture: A review of supportive technologies for ground robotics. Robotics and Autonomous Systems 169 (2023), 104514.
[56]
Manas Wakchaure, B.K. Patle, and A.K. Mahindrakar. 2023. Application of AI techniques and robotics in agriculture: A review. Artificial Intelligence in the Life Sciences 3 (2023), 100057.
[57]
Benjamin Warnke, Johann Mantler, Sven Groppe, Yuri Cotrado Sehgelmeble, and Stefan Fischer. 2022. A SPARQL benchmark for distributed databases in IoT environments. In Proceedings of The International Workshop on Big Data in Emergent Distributed Environments (Philadelphia) (BiDEDE’22). Article 5, 6 pages.
[58]
Jinyuan Xu, Baoxing Gu, and Guangzhao Tian. 2022. Review of agricultural IoT technology. Artificial Intelligence in Agriculture 6 (2022), 10–22.
[59]
Darío Fernando Yépez-Ponce, José Vicente Salcedo, Paúl D. Rosero-Montalvo, and Javier Sanchis. 2023. Mobile robotics in smart farming: current trends and applications. Frontiers in Artificial Intelligence 6 (2023).
[60]
Matei Zaharia, Ali Ghodsi, Reynold Xin, and Michael Armbrust. 2021. Lakehouse: A New Generation of Open Platforms that Unify Data Warehousing and Advanced Analytics. In 11th Conference on Innovative Data Systems Research, CIDR.
[61]
Chaoyun Zhang, Paul Patras, and Hamed Haddadi. 2019. Deep Learning in Mobile and Wireless Networking: A Survey. IEEE Communications Surveys & Tutorials 21, 3 (2019), 2224–2287.
[62]
Zhigang Zhang, Cheqing Jin, Jiali Mao, Xiaolin Yang, and Aoying Zhou. 2017. TrajSpark: A Scalable and Efficient In-Memory Management System for Big Trajectory Data. In Web and Big Data, Lei Chen, Christian S. Jensen, Cyrus Shahabi, Xiaochun Yang, and Xiang Lian (Eds.). Springer, 11–26.
[63]
Esteban Zimányi, Mahmoud Sakr, and Arthur Lesuisse. 2020. MobilityDB: A mobility database based on PostgreSQL and PostGIS. ACM Transactions on Database Systems (TODS) 45, 4 (2020), 1–42.

Index Terms

  1. Technological and Research Challenges in Data Engineering for Sustainable Agriculture

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    BiDEDE '24: Proceedings of the International Workshop on Big Data in Emergent Distributed Environments
    June 2024
    53 pages
    ISBN:9798400706790
    DOI:10.1145/3663741
    • Editors:
    • Philippe Cudré-Mauroux,
    • Andrea Kö,
    • Robert Wrembel
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 09 June 2024

    Permissions

    Request permissions for this article.

    Check for updates

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Funding Sources

    • French National Research Agency

    Conference

    SIGMOD/PODS '24
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 25 of 47 submissions, 53%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 59
      Total Downloads
    • Downloads (Last 12 months)59
    • Downloads (Last 6 weeks)12
    Reflects downloads up to 21 Nov 2024

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media