Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3643832.3661857acmconferencesArticle/Chapter ViewAbstractPublication PagesmobisysConference Proceedingsconference-collections
research-article
Open access

SuperSight: Sub-cm NLOS Localization for mmWave Backscatter

Published: 04 June 2024 Publication History

Abstract

Precise localization encompassing diverse indoor spaces is the key to immersive interaction services. In practice, indoor localization often undergoes blind spots as RF is easily blocked by everyday objects ranging from concrete walls, metallic shelves, and partitions to electronics and appliances. This paper presents SuperSight, an NLOS localization for mmWave backscatter that, for the first time, achieves NLOS (non-penetrable) localization without multipath environment profiling/manipulation. The key insight of SuperSight is uniquely exploiting the mmWave features of highly directional and specularly reflected multipath in combination with the triangular tag array to yield sub-cm NLOS localization accuracy over 8 m range - an order of magnitude performance enhancement compared to the competitors. Circularly polarized, 77GHz retro-reflective tag ensures high precision and robustness across diverse reflectors and tag orientations. The prototype was evaluated across six different reflector materials (including metal, concrete, and plaster) and demonstrated in the corridor and office space to reveal x, y, z position accuracy of up to (metal reflector) 5.7 mm, 5.5 mm, 7.7 mm at 8 m range, with Yaw, Pitch, Roll accuracy of 0.22, 0.28, 0.1 degrees respectively.

References

[1]
47 CFR Part 95. Title 47 Telecommunication, Chapter I Federal Communications Commission, Subchapter D Safety and Special Radio Services. 2024.
[2]
D. Arnitz, K. Witrisal, and U. Muehlmann. Multifrequency continuous-wave radar approach to ranging in passive uhf rfid. IEEE transactions on microwave theory and techniques, 57(5):1398--1405, 2009.
[3]
S. Azzouzi, M. Cremer, U. Dettmar, R. Kronberger, and T. Knie. New measurement results for the localization of uhf rfid transponders using an angle of arrival (aoa) approach. In 2011 IEEE International Conference on RFID, pages 91--97. IEEE, 2011.
[4]
K. M. Bae, N. Ahn, Y. Chae, P. Pathak, S. M. Sohn, and S. M. Kim. OmniScatter: Extreme sensitivity mmwave backscattering using commodity fmcw radar. In ACM MobiSys' 22, 2022.
[5]
K. M. Bae, H. Moon, S. M. Sohn, and S. M. Kim. Hawkeye: Hectometer-range subcentimeter localization for large-scale mmwave backscatter. ACM MobiSys '23, page 303--316, New York, NY, USA, 2023.
[6]
G. Bielsa, J. Palacios, A. Loch, D. Steinmetzer, P. Casari, and J. Widmer. Indoor localization using commercial off-the-shelf 60 ghz access points. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pages 2384--2392. IEEE, 2018.
[7]
A. Blanco, P. J. Mateo, F. Gringoli, and J. Widmer. Augmenting mmwave localization accuracy through sub-6 ghz on off-the-shelf devices. In Proceedings of the 20th Annual International Conference on Mobile Systems, Applications and Services, pages 477--490, 2022.
[8]
L. Chang, J. Xiong, J. Wang, X. Chen, Y. Wang, Z. Tang, and D. Fang. Rf-copybook: A millimeter level calligraphy copybook based on commodity rfid. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(4):1--19, 2018.
[9]
P. Corbalán, G. P. Picco, and S. Palipana. Chorus: Uwb concurrent transmissions for gps-like passive localization of countless targets. In Proceedings of the 18th International Conference on Information Processing in Sensor Networks, pages 133--144, 2019.
[10]
Y. Dai, X. Shuai, R. Tan, and G. Xing. Interpersonal distance tracking with mmwave radar and imus. In Proceedings of the 22nd International Conference on Information Processing in Sensor Networks, pages 123--135, 2023.
[11]
G. Dudek and M. Jenkin. Computational Principles of Mobile Robotics. 2nd edition. Cambridge University Press, 2010.
[12]
R. Garg. Microstrip antenna design handbook. Artech house, 2001.
[13]
C. Gustafson, K. Haneda, S. Wyne, and F. Tufvesson. On mm-wave multipath clustering and channel modeling. IEEE transactions on antennas and propagation, 62(3):1445--1455, 2013.
[14]
C. Gustafson and F. Tufvesson. 2 mami channel characteristics : Measurement results. 2015.
[15]
J. Han, C. Qian, X. Wang, D. Ma, J. Zhao, W. Xi, Z. Jiang, and Z. Wang. Twins: Device-free object tracking using passive tags. IEEE/ACM Transactions on Networking, 24(3):1605--1617, 2015.
[16]
S. He, S. Xiong, W. Zhang, Y. Yang, J. Ren, and Y. Huang. Gblinks: Gnn-based beam selection and link activation for ultra-dense d2d mmwave networks. IEEE Transactions on Communications, 70(5):3451--3466, 2022.
[17]
J.-S. G. Hong and M. J. Lancaster. Microstrip filters for RF/microwave applications. John Wiley & Sons, 2004.
[18]
C. Jiang, Y. He, X. Zheng, and Y. Liu. Orientation-aware rfid tracking with centimeter-level accuracy. In 2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), pages 290--301. IEEE, 2018.
[19]
S. Ju, S. H. A. Shah, M. A. Javed, J. Li, G. Palteru, J. Robin, Y. Xing, O. Kanhere, and T. S. Rappaport. Scattering mechanisms and modeling for terahertz wireless communications. In ICC 2019-2019 IEEE International Conference on Communications (ICC), pages 1--7. IEEE, 2019.
[20]
N. C. Karmakar et al. Chipless rfid tag localization. IEEE transactions on Microwave Theory and Techniques, 61(11):4008--4017, 2013.
[21]
S. M. Kay. Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory. Prentice Hall, 1993.
[22]
Keysight Technologies. 34465A 6.5 Digit Multimeter. https://www.keysight.com/us/en/product/34465A/digital-multimeter-6-5-digit-truevolt-dmm.html.
[23]
M. Khatun, C. Guo, and H. Mehrpouyan. Penetration and reflection characteristics in millimeter-wave indoor channels. In 2021 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), pages 1--5, 2021.
[24]
A. Kludze and Y. Ghasempour. Leakyscatter: Scaling wireless backscatter above 100 ghz. GetMobile: Mobile Computing and Communications, 27(3):33--39, 2023.
[25]
H. Kong, X. Xu, J. Yu, Q. Chen, C. Ma, Y. Chen, Y.-C. Chen, and L. Kong. m3track: mmwave-based multi-user 3d posture tracking. In Proceedings of the 20th Annual International Conference on Mobile Systems, Applications and Services, pages 491--503, 2022.
[26]
S. K. Koul and B. Bhat. Microwave and millimeter wave phase shifters, volume 2. Artech House Norwood, MA, 1991.
[27]
R. Kronberger, T. Knie, R. Leonardi, U. Dettmar, M. Cremer, and S. Azzouzi. Uhf rfid localization system based on a phased array antenna. In 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), pages 525--528. IEEE, 2011.
[28]
C. Lai, R. Sun, C. Gentile, P. B. Papazian, J. Wang, and J. Senic. Methodology for multipath-component tracking in millimeter-wave channel modeling. IEEE Transactions on Antennas and Propagation, 67(3):1826--1836, 2019.
[29]
R. B. Langley. Dilution of precision. 1999.
[30]
S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.
[31]
M. Lecci, P. Testolina, M. Giordani, M. Polese, T. Ropitault, C. Gentile, N. Varshney, A. Bodi, and M. Zorzi. Simplified ray tracing for the millimeter wave channel: A performance evaluation. In 2020 Information Theory and Applications Workshop (ITA), pages 1--6, 2020.
[32]
T. H. Lee. Planar microwave engineering: a practical guide to theory, measurement, and circuits, volume 1. Cambridge university press, 2004.
[33]
X. Li, Y. Zhang, and M. G. Amin. Multifrequency-based range estimation of rfid tags. In 2009 IEEE International Conference on RFID, pages 147--154. IEEE, 2009.
[34]
B. Liang, P. Wang, R. Zhao, H. Guo, P. Zhang, J. Guo, S. Zhu, H. H. Liu, X. Zhang, and C. Xu. {RF-Chord}: Towards deployable {RFID} localization system for logistic networks. In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23), pages 1783--1799, 2023.
[35]
J. Liu, J. Gao, S. Jha, and W. Hu. Seirios: leveraging multiple channels for lorawan indoor and outdoor localization. In Proceedings of the 27th Annual International Conference on Mobile Computing and Networking, pages 656--669, 2021.
[36]
L. Liu, C. Oestges, J. Poutanen, K. Haneda, P. Vainikainen, F. Quitin, F. Tufvesson, and P. De Doncker. The cost 2100 mimo channel model. IEEE Wireless Communications, 19(6):92--99, 2012.
[37]
Z. Luo, Q. Zhang, Y. Ma, M. Singh, and F. Adib. 3d backscatter localization for fine-grained robotics. In 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19), pages 765--782, 2019.
[38]
Macom. MADP-000907-14020. https://cdn.macom.com/datasheets/MADP-000907-14020x.pdf.
[39]
Macom. MASW-011029. https://cdn.macom.com/datasheets/MASW-011029.pdf.
[40]
Macom. MASW-011111-DIE. https://cdn.macom.com/datasheets/MASW-011111-DIE.pdf.
[41]
K. Mahima, M. Weerasekara, K. D. Zoysa, C. Keppitiyagama, M. Flierl, L. Mottola, and T. Voigt. Mm4drone: A multi-spectral image and mmwave radar approach for identifying mosquito breeding grounds via aerial drones. In International Conference on Pervasive Computing Technologies for Healthcare, pages 412--426. Springer, 2022.
[42]
F. D. Mbairi, W. P. Siebert, and H. Hesselbom. High-frequency transmission lines crosstalk reduction using spacing rules. IEEE transactions on components and packaging technologies, 31(3):601--610, 2008.
[43]
A. F. Molisch, D. Cassioli, C.-C. Chong, S. Emami, A. Fort, B. Kannan, J. Karedal, J. Kunisch, H. G. Schantz, K. Siwiak, et al. A comprehensive standardized model for ultrawideband propagation channels. IEEE Transactions on Antennas and Propagation, 54(11):3151--3166, 2006.
[44]
Panasonic. CR2477. https://industrial.panasonic.com/cdbs/www-data/pdf2/AAA4000/AAA4000C341.pdf.
[45]
A. Parr, R. Miesen, and M. Vossiek. Inverse sar approach for localization of moving rfid tags. In 2013 IEEE International Conference on RFID (RFID), pages 104--109. IEEE, 2013.
[46]
D. M. Pozar. Microwave engineering. John wiley & sons, 2011.
[47]
Rogers Corporation. Rogers RO4003C. https://www.rogerscorp.com/advanced-electronics-solutions/ro4000-series-laminates/ro4003c-laminates.
[48]
W. Ruan, L. Yao, Q. Z. Sheng, N. J. Falkner, and X. Li. Tagtrack: Device-free localization and tracking using passive rfid tags. In Proceedings of the 11th international conference on mobile and ubiquitous systems: computing, networking and services, pages 80--89, 2014.
[49]
A. Sain and K. L. Melde. Impact of ground via placement in grounded coplanar waveguide interconnects. IEEE Transactions on Components, Packaging and Manufacturing Technology, 6(1):136--144, 2015.
[50]
P. Series. Propagation by diffraction. Recommendation ITU-R P. 526-13, 2013.
[51]
Y. Shu, P. Cheng, Y. Gu, J. Chen, and T. He. Toc: Localizing wireless rechargeable sensors with time of charge. ACM transactions on sensor networks (TOSN), 11(3):1--22, 2015.
[52]
SiTime. SiT1569. https://www.sitime.com/support/resource-library/datasheets/sit1569-datasheet.
[53]
E. Soltanaghaei, A. Prabhakara, A. Balanuta, M. Anderson, J. M. Rabaey, S. Kumar, and A. Rowe. Millimetro: mmwave retro-reflective tags for accurate, long range localization. In MobiCom, 2021.
[54]
STANDA LTD. 8MG-2SQ200-Motorized Goniometers (Gimbal Mounts) for Large Square Optics. https://www.standa.lt/products/catalog/custom_engineering?item=570.
[55]
STANDA LTD. 8MT295 - Long-Travel Motorized Linear Stages. https://www.standa.lt/products/catalog/motorised_positioners?item=305.
[56]
Texas Instruments. MMWCAS-RF-EVM. https://www.ti.com/tool/MMWCAS-RF-EVM.
[57]
Texas Instruments. TPS7A02. https://www.ti.com/lit/ds/symlink/tps7a02.pdf.
[58]
Texas Instruments. TPS7A03. https://www.ti.com/lit/ds/symlink/tps7a03.pdf.
[59]
Texas Instruments. Moving from legacy 24 GHz to state-of-the-art 77 GHz radar. 2017.
[60]
C. Wang, J. Liu, Y. Chen, L. Xie, H. B. Liu, and S. Lu. Rf-kinect: A wearable rfid-based approach towards 3d body movement tracking. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(1):1--28, 2018.
[61]
J. Wang and D. Katabi. Dude, where's my card? rfid positioning that works with multipath and non-line of sight. In Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM, pages 51--62, 2013.
[62]
J. Wang, J. Xiong, H. Jiang, X. Chen, and D. Fang. D-watch: Embracing"" bad"" multipaths for device-free localization with cots rfid devices. In Proceedings of the 12th International on Conference on emerging Networking EXperiments and Technologies, pages 253--266, 2016.
[63]
H. Wu, B. Tao, Z. Gong, Z. Yin, and H. Ding. A fast uhf rfid localization method using unwrapped phase-position model. IEEE Transactions on Automation Science and Engineering, 16(4):1698--1707, 2019.
[64]
D. Xie, X. Wang, and A. Tang. Metasight: localizing blocked rfid objects by modulating nlos signals via metasurfaces. In Proceedings of the 20th Annual International Conference on Mobile Systems, Applications and Services, pages 504--516, 2022.
[65]
H. Xue, Q. Cao, C. Miao, Y. Ju, H. Hu, A. Zhang, and L. Su. Towards generalized mmwave-based human pose estimation through signal augmentation. In Proceedings of the 29th Annual International Conference on Mobile Computing and Networking, pages 1--15, 2023.
[66]
L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu. Tagoram: Real-time tracking of mobile rfid tags to high precision using cots devices. In Proceedings of the 20th annual international conference on Mobile computing and networking, pages 237--248, 2014.
[67]
S. Yang, M. Jin, Y. He, and Y. Liu. Rf-prism: Versatile rfid-based sensing through phase disentangling. In 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS), pages 1053--1063. IEEE, 2021.
[68]
J. Zhang, X. Liu, T. Gu, X. Tong, S. Chen, and K. Li. Siloc: A speed inconsistency-immune approach to mobile rfid robot localization. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications, pages 1--10. IEEE, 2021.
[69]
R. Zhao, T. Woodford, T. Wei, K. Qian, and X. Zhang. M-cube: A millimeter-wave massive mimo software radio. In MobiCom, 2020.
[70]
J. Zhou, H. Zhang, and L. Mo. Two-dimension localization of passive rfid tags using aoa estimation. In 2011 IEEE International Instrumentation and Measurement Technology Conference, pages 1--5. IEEE, 2011.

Index Terms

  1. SuperSight: Sub-cm NLOS Localization for mmWave Backscatter

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    MOBISYS '24: Proceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services
    June 2024
    778 pages
    ISBN:9798400705816
    DOI:10.1145/3643832
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    In-Cooperation

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 04 June 2024

    Check for updates

    Author Tags

    1. internet-of-things
    2. mmWave
    3. backscatter
    4. localization
    5. FMCW

    Qualifiers

    • Research-article

    Funding Sources

    • Samsung Research Funding & Incubation Center of Samsung Electronics
    • MSIT (Ministry of Science and ICT), Korea

    Conference

    MOBISYS '24
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 274 of 1,679 submissions, 16%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 638
      Total Downloads
    • Downloads (Last 12 months)638
    • Downloads (Last 6 weeks)158
    Reflects downloads up to 03 Oct 2024

    Other Metrics

    Citations

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media