Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3642970.3655836acmconferencesArticle/Chapter ViewAbstractPublication PageseurosysConference Proceedingsconference-collections
research-article
Open access

Deploying Stateful Network Functions Efficiently using Large Language Models

Published: 22 April 2024 Publication History

Abstract

Stateful network functions are increasingly used in data centers. However, their scalability remains a significant challenge since parallelizing packet processing across multiple cores requires careful configuration t o avoid compromising the application's semantics or performance. This challenge is particularly important when deploying multiple stateful functions on multi-core servers. This paper proposes FlowMage, a system that leverages Large Language Models (LLMs) to perform code analysis and extract essential information from stateful network functions (NFs) prior to their deployment on a server. FlowMage uses this data to find an efficient configuration of an NF chain that maximizes performance while preserving the semantics of the NF chain. Our evaluation shows that, utilizing GPT-4, FlowMage is able to find and apply optimized configuration when deploying stateful NFs chain on a server, resulting in significant p erformance improvement (up to 11×) in comparison to the default configuration of the system.

References

[1]
Tom Barbette. 2015. GitHub - FastClick. https://github.com/tbarbette/fastclick https://github.com/tbarbette/fastclick.
[2]
Tom Barbette, Georgios P. Katsikas, Gerald Q. Maguire Jr., and Dejan Kostić. 2019. RSS++: load and state-aware receive side scaling. In Proceedings of the 15th International Conference on Emerging Networking Experiments And Technologies (Orlando, Florida) (CoNEXT '19). ACM, New York, NY, USA, 318--333. https://doi.org/10.1145/3359989.3365412 http://doi.acm.org/10.1145/3359989.3365412.
[3]
Tom Barbette, Cyril Soldani, and Laurent Mathy. 2015. Fast userspace packet processing. In Proceedings of the Eleventh ACM/IEEE Symposium on Architectures for Networking and Communications Systems (Oakland, California, USA) (ANCS '15). IEEE Computer Society, Washington, DC, USA, 5--16. http://dl.acm.org/citation.cfm?id=2772722.2772727
[4]
Tom Barbette, Cyril Soldani, and Laurent Mathy. 2021. Combined Stateful Classification and Session Splicing for High-Speed NFV Service Chaining. IEEE/ACM Trans. Netw. 29, 6 (dec 2021), 2560--2573. https://doi.org/10.1109/TNET.2021.3099240
[5]
Raouf Boutaba, Mohammad A Salahuddin, Noura Limam, Sara Ayoubi, Nashid Shahriar, Felipe Estrada-Solano, and Oscar M Caicedo. 2018. A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. Journal of Internet Services and Applications 9, 1 (2018), 1--99.
[6]
Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro, and Yi Zhang. 2023. Sparks of Artificial General Intelligence: Early experiments with GPT-4. arXiv:2303.12712 [cs.CL]
[7]
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. 2021. Evaluating Large Language Models Trained on Code. arXiv:2107.03374 [cs.LG]
[8]
Chris Cummins, Volker Seeker, Dejan Grubisic, Mostafa Elhoushi, Youwei Liang, Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Kim Hazelwood, Gabriel Synnaeve, and Hugh Leather. 2023. Large Language Models for Compiler Optimization. arXiv:2309.07062 [cs.PL]
[9]
Chongzhou Fang, Ning Miao, Shaurya Srivastav, Jialin Liu, Ruoyu Zhang, Ruijie Fang, Asmita Asmita, Ryan Tsang, Najmeh Nazari, Han Wang, and Houman Homayoun. 2023. Large Language Models for Code Analysis: Do LLMs Really Do Their Job? arXiv:2310.12357 [cs.SE]
[10]
Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kostić. 2021. PacketMill: Toward per-core 100-Gbps Networking. In Proceedings of the Twenty-Sixth International Conference on Architectural Support for Programming Languages and Operating Systems (Virtual, USA) (ASPLOS '21). Association for Computing Machinery, New York, NY, USA, 17 pages. https://doi.org/10.1145/3445814.3446724
[11]
Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kostić. 2019. Make the Most out of Last Level Cache in Intel Processors. In Proceedings of the Fourteenth EuroSys Conference 2019 (Dresden, Germany) (EuroSys '19). ACM, New York, NY, USA, Article 8, 17 pages. https://doi.org/10.1145/3302424.3303977
[12]
FD.io. 2017. Vector Packet Processing - One Terabit Software Router on Intel Xeon Scalable Processor Family Server. Technical Report. Cisco, Intel Corporation, FD.io. https://fd.io/docs/whitepapers/FDioVPPwhitepaperJuly2017.pdf
[13]
Hamid Ghasemirahni, Tom Barbette, Georgios P. Katsikas, Alireza Farshin, Amir Roozbeh, Massimo Girondi, Marco Chiesa, Gerald Q. Maguire Jr., and Dejan Kostić. 2022. Packet Order Matters! Improving Application Performance by Deliberately Delaying Packets. In 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22). USENIX Association, Renton, WA, 807--827. https://www.usenix.org/conference/nsdi22/presentation/ghasemirahni
[14]
Swati Goswami, Nodir Kodirov, Craig Mustard, Ivan Beschastnikh, and Margo Seltzer. 2020. Parking Packet Payload with P4. Association for Computing Machinery, New York, NY, USA, 274--281. https://doi.org/10.1145/3386367.3431295
[15]
Qiuhan Gu. 2023. LLM-Based Code Generation Method for Golang Compiler Testing. In Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (San Francisco, CA, USA) (ESEC/FSE 2023). Association for Computing Machinery, New York, NY, USA, 2201--2203. https://doi.org/10.1145/3611643.3617850
[16]
Walid Hariri. 2023. Unlocking the Potential of ChatGPT: A Comprehensive Exploration of its Applications, Advantages, Limitations, and Future Directions in Natural Language Processing. arXiv:2304.02017 [cs.CL]
[17]
Chase Harrison. 2024. LangChain. https://github.com/langchainai/langchain Accessed 2024-03-23.
[18]
Intel. 2016. Ethernet Flow Director. http://www.intel.com/content/www/us/en/ethernet-controllers/ethernet-flow-director-video.html
[19]
Intel. 2016. Receive-Side Scaling (RSS). http://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdf
[20]
Intel. 2022. Intel Tofino Series. https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html.
[21]
Intel Barefoot Networks. 2020. Tofino-2 Second-generation of World's fastest P4-programmable Ethernet switch ASICs. https://www.barefootnetworks.com/products/brief-tofino-2/
[22]
Rishabh Iyer, Luis Pedrosa, Arseniy Zaostrovnykh, Solal Pirelli, Katerina Argyraki, and George Candea. 2019. Performance Contracts for Software Network Functions. In 16th USENIX Symposium on Networked Systems Design and Implementation (NSD1 19). USENIX Association, Boston, MA, 517--530. https://www.usenix.org/conference/nsdi19/presentation/iyer
[23]
Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Rebecca Steinert, and Gerald Q. Maguire Jr. 2018. Metron: NFV Service Chains at the True Speed of the Underlying Hardware. In 15th USENIX Conference on Networked Systems Design and Implementation (NSDI'18). USENIX Association, Renton, WA, 171--186. https://www.usenix.org/system/files/conference/nsdi18/nsdi18-katsikas.pdf
[24]
Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. 2023. Assisting Static Analysis with Large Language Models: A ChatGPT Experiment. In Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (San Francisco, CA, USA) (ESEC/FSE 2023). Association for Computing Machinery, New York, NY, USA, 2107--2111. https://doi.org/10.1145/3611643.3613078
[25]
Yuancheng Li, Rong Ma, and Runhai Jiao. 2015. hybrid malicious code detection method based on deep learning. International Journal of Security and Its Applications 9, 5 (2015), 205--216.
[26]
Shih-Chun Lin, Ian F. Akyildiz, Pu Wang, and Min Luo. 2016. QoS-Aware Adaptive Routing in Multi-layer Hierarchical Software Defined Networks: A Reinforcement Learning Approach. In 2016 IEEE International Conference on Services Computing (SCC). IEEE, San Francisco, CA, USA, 25--33. https://doi.org/10.1109/SCC.2016.12
[27]
Yiheng Liu, Tianle Han, Siyuan Ma, Jiayue Zhang, Yuanyuan Yang, Jiaming Tian, Hao He, Antong Li, Mengshen He, Zhengliang Liu, Zihao Wu, Lin Zhao, Dajiang Zhu, Xiang Li, Ning Qiang, Dingang Shen, Tianming Liu, and Bao Ge. 2023. Summary of ChatGPT-Related research and perspective towards the future of large language models. Meta-Radiology 1, 2 (2023), 100017. https://doi.org/10.1016/j.metrad.2023.100017
[28]
Brandon Lucia, Joseph Devietti, Karin Strauss, and Luis Ceze. 2008. Atom-aid: Detecting and surviving atomicity violations. ACM SIGARCH Computer Architecture News 36, 3 (2008), 277--288.
[29]
Sathiya Kumaran Mani, Yajie Zhou, Kevin Hsieh, Santiago Segarra, Trevor Eberl, Eliran Azulai, Ido Frizler, Ranveer Chandra, and Srikanth Kandula. 2023. Enhancing Network Management Using Code Generated by Large Language Models. In Proceedings of the 22nd ACM Workshop on Hot Topics in Networks (Cambridge, MA, USA) (HotNets '23). Association for Computing Machinery, New York, NY, USA, 196--204. https://doi.org/10.1145/3626111.3628183
[30]
Rajdeep Mondal, Alan Tang, Ryan Beckett, Todd Millstein, and George Varghese. 2023. What Do LLMs Need to Synthesize Correct Router Configurations?. In Proceedings of the 22nd ACM Workshop on Hot Topics in Networks (Cambridge, MA, USA) (HotNets '23). Association for Computing Machinery, New York, NY, USA, 189--195. https://doi.org/10.1145/3626111.3628194
[31]
NVIDIA Mellanox. 2019. ConnectX®-6 EN IC 200GbE Ethernet Adapter IC. https://www.mellanox.com/related-docs/prod_silicon/PB_ConnectX-6_EN_IC.pdf
[32]
OpenAI. 2024. Models. https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo Accessed 2024-02-29.
[33]
Luis Pedrosa, Rishabh Iyer, Arseniy Zaostrovnykh, Jonas Fietz, and Katerina Argyraki. 2018. Automated synthesis of adversarial workloads for network functions. In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication (Budapest, Hungary) (SIGCOMM '18). Association for Computing Machinery, New York, NY, USA, 372--385. https://doi.org/10.1145/3230543.3230573
[34]
Francisco Pereira, Fernando M. V. Ramos, and Luis Pedrosa. 2023. Automatic Parallelization of Software Network Functions. arXiv:2307.14791 [cs.NI] to be published in NSDI24.
[35]
Steven I. Ross, Fernando Martinez, Stephanie Houde, Michael Muller, and Justin D. Weisz. 2023. The Programmer's Assistant: Conversational Interaction with a Large Language Model for Software Development. In Proceedings of the 28th International Conference on Intelligent User Interfaces (Sydney, NSW, Australia) (IUI '23). Association for Computing Machinery, New York, NY, USA, 491--514. https://doi.org/10.1145/3581641.3584037
[36]
Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. 2023. Code Llama: Open Foundation Models for Code. arXiv:2308.12950 [cs.CL]
[37]
Mariano Scazzariello, Tommaso Caiazzi, Hamid Ghasemirahni, Tom Barbette, Dejan Kostić, and Marco Chiesa. 2023. A High-Speed Stateful Packet Processing Approach for Tbps Programmable Switches. In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23). USENIX Association, Boston, MA, 1237--1255. https://www.usenix.org/conference/nsdi23/presentation/scazzariello
[38]
Prakhar Sharma and Vinod Yegneswaran. 2023. PROSPER: Extracting Protocol Specifications Using Large Language Models. In Proceedings of the 22nd ACM Workshop on Hot Topics in Networks (Cambridge, MA, USA) (HotNets '23). Association for Computing Machinery, New York, NY, USA, 41--47. https://doi.org/10.1145/3626111.3628205
[39]
Gemini Team. 2023. Gemini: A Family of Highly Capable Multimodal Models. arXiv:2312.11805 [cs.CL]
[40]
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates, Inc., San Diego, CA, USA. https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
[41]
Changjie Wang, Mariano Scazzariello, Alireza Farshin, Dejan Kostic, and Marco Chiesa. 2023. Making Network Configuration Human Friendly. arXiv:2309.06342 [cs.NI]
[42]
Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A systematic evaluation of large language models of code. In Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming (San Diego, CA, USA) (MAPS 2022). Association for Computing Machinery, New York, NY, USA, 1--10. https://doi.org/10.1145/3520312.3534862
[43]
Lei Yan, Yueyang Pan, Diyu Zhou, George Candea, and Sanidhya Kashyap. 2024. Transparent Multicore Scaling of Single-Threaded Network Functions. In 19th ACM European Conference on Computer Systems (EuroSys '24). ACM, New York, NY, USA, 16 pages.
[44]
Ticao Zhang and Shiwen Mao. 2020. Machine learning for end-to-end congestion control. IEEE Communications Magazine 58, 6 (2020), 52--57.
[45]
Haifeng Zheng, Feng Lin, Xinxin Feng, and Youjia Chen. 2020. A hybrid deep learning model with attention-based conv-LSTM networks for short-term traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems 22, 11 (2020), 6910--6920.

Cited By

View all
  • (2024)FAJITA: Stateful Packet Processing at 100 Million ppsProceedings of the ACM on Networking10.1145/36768612:CoNEXT3(1-22)Online publication date: 21-Aug-2024

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
EuroMLSys '24: Proceedings of the 4th Workshop on Machine Learning and Systems
April 2024
218 pages
ISBN:9798400705410
DOI:10.1145/3642970
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives International 4.0 License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 22 April 2024

Check for updates

Author Tags

  1. Intra-Server Load Balancing
  2. LLMs
  3. RSS Configuration
  4. Stateful Network Functions
  5. Static Code Analysis

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

Conference

EuroSys '24
Sponsor:

Acceptance Rates

Overall Acceptance Rate 18 of 26 submissions, 69%

Upcoming Conference

EuroSys '25
Twentieth European Conference on Computer Systems
March 30 - April 3, 2025
Rotterdam , Netherlands

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)450
  • Downloads (Last 6 weeks)67
Reflects downloads up to 09 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)FAJITA: Stateful Packet Processing at 100 Million ppsProceedings of the ACM on Networking10.1145/36768612:CoNEXT3(1-22)Online publication date: 21-Aug-2024

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media