Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3640457.3688027acmconferencesArticle/Chapter ViewAbstractPublication PagesrecsysConference Proceedingsconference-collections
extended-abstract

Enhancing Cross-Domain Recommender Systems with LLMs: Evaluating Bias and Beyond-Accuracy Measures

Published: 08 October 2024 Publication History

Abstract

The research domain of recommender systems is rapidly evolving. Initially, optimization efforts focused primarily on accuracy. However, recent research has highlighted the importance of addressing bias and beyond-accuracy measures such as novelty, diversity, and serendipity. With the rise of multi-domain recommender systems, the need to re-examine bias and beyond-accuracy measures in cross-domain settings has become crucial. Traditional methods face challenges such as cold-start problems, which can potentially be mitigated by leveraging LLMs. This proposed work investigates how LLM-based recommendation methods can enhance cross-domain recommender systems, focusing on identifying, measuring, and mitigating bias while evaluating the impact of beyond-accuracy measures. We aim to provide new insights by comparing traditional and LLM-based systems within a real-world environment encompassing the domains of news, books, and various lifestyle areas. Our research seeks to address the outlined gaps and develop effective evaluation strategies for the unique challenges posed by LLMs in cross-domain recommender systems.

References

[1]
Himan Abdollahpouri, Masoud Mansoury, Robin Burke, and Bamshad Mobasher. 2019. The Unfairness of Popularity Bias in Recommendation. http://arxiv.org/abs/1907.13286 arXiv:1907.13286 [cs].
[2]
Himan Abdollahpouri, Masoud Mansoury, Robin Burke, and Bamshad Mobasher. 2020. The Connection Between Popularity Bias, Calibration, and Fairness in Recommendation. In Fourteenth ACM Conference on Recommender Systems. ACM, Virtual Event Brazil, 726–731. https://doi.org/10.1145/3383313.3418487
[3]
Himan Abdollahpouri, Masoud Mansoury, Robin Burke, Bamshad Mobasher, and Edward Malthouse. 2021. User-centered Evaluation of Popularity Bias in Recommender Systems. In Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization(UMAP ’21). Association for Computing Machinery, New York, NY, USA, 119–129. https://doi.org/10.1145/3450613.3456821 event-place: Utrecht, Netherlands.
[4]
Mehwish Alam, Andreea Iana, Alexander Grote, Katharina Ludwig, Philipp Müller, and Heiko Paulheim. 2022. Towards Analyzing the Bias of News Recommender Systems Using Sentiment and Stance Detection. In Companion Proceedings of the Web Conference 2022. 448–457. https://doi.org/10.1145/3487553.3524674 arXiv:2203.05824 [cs].
[5]
Enrique Amigó, Yashar Deldjoo, Stefano Mizzaro, and Alejandro Bellogín. 2023. A unifying and general account of fairness measurement in recommender systems. Information Processing & Management 60, 1 (2023), 103115. https://doi.org/10.1016/j.ipm.2022.103115
[6]
Keqin Bao, Jizhi Zhang, Yang Zhang, Wang Wenjie, Fuli Feng, and Xiangnan He. 2023. Large Language Models for Recommendation: Progresses and Future Directions. In Proceedings of the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region(SIGIR-AP ’23). Association for Computing Machinery, New York, NY, USA, 306–309. https://doi.org/10.1145/3624918.3629550
[7]
Ludovico Boratto and Mirko Marras. 2021. Advances in Bias-aware Recommendation on the Web. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining(WSDM ’21). Association for Computing Machinery, New York, NY, USA, 1147–1149. https://doi.org/10.1145/3437963.3441665 event-place: Virtual Event, Israel.
[8]
Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan He. 2023. Bias and Debias in Recommender System: A Survey and Future Directions. ACM Trans. Inf. Syst. 41, 3 (Feb. 2023). https://doi.org/10.1145/3564284 Place: New York, NY, USA Publisher: Association for Computing Machinery.
[9]
Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun. 2024. Benchmarking Large Language Models in Retrieval-Augmented Generation. Proceedings of the AAAI Conference on Artificial Intelligence 38, 16 (March 2024), 17754–17762. https://doi.org/10.1609/aaai.v38i16.29728
[10]
Seonghwan Choi, Hyeondey Kim, and Manjun Gim. 2022. Do Not Read the Same News! Enhancing Diversity and Personalization of News Recommendation. In Companion Proceedings of the Web Conference 2022. ACM, Virtual Event, Lyon France, 1211–1215. https://doi.org/10.1145/3487553.3524936
[11]
Maurizio Ferrari Dacrema, Iván Cantador, Ignacio Fernández-Tobías, Shlomo Berkovsky, and Paolo Cremonesi. 2022. Design and Evaluation of Cross-Domain Recommender Systems. In Recommender Systems Handbook, Francesco Ricci, Lior Rokach, and Bracha Shapira (Eds.). Springer US, New York, NY, 485–516. https://doi.org/10.1007/978-1-0716-2197-4_13
[12]
Maarten de Rijke. 2023. Beyond-Accuracy Goals, Again. In Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining(WSDM ’23). Association for Computing Machinery, New York, NY, USA, 2–3. https://doi.org/10.1145/3539597.3572332 event-place: Singapore, Singapore.
[13]
Yashar Deldjoo, Dietmar Jannach, Alejandro Bellogin, Alessandro Difonzo, and Dario Zanzonelli. 2023. Fairness in recommender systems: research landscape and future directions. User Modeling and User-Adapted Interaction (April 2023). https://doi.org/10.1007/s11257-023-09364-z
[14]
Michael D. Ekstrand, Anubrata Das, Robin Burke, and Fernando Diaz. 2022. Fairness in Information Access Systems. Foundations and Trends® in Information Retrieval 16, 1-2 (2022), 1–177. https://doi.org/10.1561/1500000079 arXiv:2105.05779 [cs].
[15]
Michael D. Ekstrand, Anubrata Das, Robin Burke, and Fernando Diaz. 2022. Fairness in Recommender Systems. In Recommender Systems Handbook, Francesco Ricci, Lior Rokach, and Bracha Shapira (Eds.). Springer US, New York, NY, 679–707. https://doi.org/10.1007/978-1-0716-2197-4_18
[16]
Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. 2022. Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5). In Proceedings of the 16th ACM Conference on Recommender Systems(RecSys ’22). Association for Computing Machinery, New York, NY, USA, 299–315. https://doi.org/10.1145/3523227.3546767
[17]
Dante Godolja, Thomas Elmar Kolb, and Julia Neidhardt. 2024. Unlocking the Potential of Content-Based Restaurant Recommender Systems. In Information and Communication Technologies in Tourism 2024, Katerina Berezina, Lyndon Nixon, and Aarni Tuomi (Eds.). Springer Nature Switzerland, Cham, 239–244.
[18]
Maarten Grootendorst. 2022. BERTopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv preprint arXiv:2203.05794 (2022).
[19]
Han Han, Can Wang, Yunwei Zhao, Min Shu, Wenlei Wang, and Yong Min. 2022. SSLE: A framework for evaluating the “Filter Bubble” effect on the news aggregator and recommenders. World Wide Web 25, 3 (May 2022), 1169–1195. https://doi.org/10.1007/s11280-022-01031-4
[20]
Zhankui He, Zhouhang Xie, Rahul Jha, Harald Steck, Dawen Liang, Yesu Feng, Bodhisattwa Prasad Majumder, Nathan Kallus, and Julian Mcauley. 2023. Large Language Models as Zero-Shot Conversational Recommenders. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management(CIKM ’23). Association for Computing Machinery, New York, NY, USA, 720–730. https://doi.org/10.1145/3583780.3614949
[21]
Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. 2021. LoRA: Low-Rank Adaptation of Large Language Models. _eprint: 2106.09685.
[22]
Blake Huebner. 2023. Exploring group fairness in news media recommendations: Algorithms, metrics, and grouping. Diploma Thesis. Technische Universität Wien, Wien. https://doi.org/10.34726/hss.2023.107255
[23]
Blake Huebner, Thomas Elmar Kolb, and Julia Neidhardt. 2024. Evaluating Group Fairness in News Recommendations: A Comparative Study of Algorithms and Metrics. In Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization (UMAP Adjunct ’24). ACM, New York, NY, USA, 10. https://doi.org/10.1145/3631700.3664897
[24]
Di Jin, Luzhi Wang, He Zhang, Yizhen Zheng, Weiping Ding, Feng Xia, and Shirui Pan. 2023. A survey on fairness-aware recommender systems. Information Fusion 100 (2023), 101906. https://doi.org/10.1016/j.inffus.2023.101906
[25]
Bettina M. J. Kern, Andreas Baumann, Thomas E. Kolb, Katharina Sekanina, Klaus Hofmann, Tanja Wissik, and Julia Neidhardt. 2021. A Review and Cluster Analysis of German Polarity Resources for Sentiment Analysis. In 3rd Conference on Language, Data and Knowledge (LDK 2021)(Open Access Series in Informatics (OASIcs), Vol. 93), Dagmar Gromann, Gilles Sérasset, Thierry Declerck, John P. McCrae, Jorge Gracia, Julia Bosque-Gil, Fernando Bobillo, and Barbara Heinisch (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 37:1–37:17. https://doi.org/10.4230/OASIcs.LDK.2021.37 ISSN: 2190-6807.
[26]
Sein Kim, Hongseok Kang, Seungyoon Choi, Donghyun Kim, Minchul Yang, and Chanyoung Park. 2024. Large Language Models meet Collaborative Filtering: An Efficient All-round LLM-based Recommender System. _eprint: 2404.11343.
[27]
Anastasiia Klimashevskaia, Mehdi Elahi, Dietmar Jannach, Lars Skjærven, Astrid Tessem, and Christoph Trattner. 2023. Evaluating The Effects of Calibrated Popularity Bias Mitigation: A Field Study. In Proceedings of the 17th ACM Conference on Recommender Systems(RecSys ’23). Association for Computing Machinery, New York, NY, USA, 1084–1089. https://doi.org/10.1145/3604915.3610637 event-place: Singapore, Singapore.
[28]
Anastasiia Klimashevskaia, Dietmar Jannach, Mehdi Elahi, and Christoph Trattner. 2024. A Survey on Popularity Bias in Recommender Systems. User Modeling and User-Adapted Interaction (UMUAI) (June 2024). https://mediafutures.no/popularitybias_literature_review-5/
[29]
Thomas Kolb, Sekanina Katharina, Bettina Manuela Johanna Kern, Julia Neidhardt, Tanja Wissik, and Andreas Baumann. 2022. The ALPIN Sentiment Dictionary: Austrian Language Polarity in Newspapers. In Proceedings of the Thirteenth Language Resources and Evaluation Conference, Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Jan Odijk, and Stelios Piperidis (Eds.). European Language Resources Association, Marseille, France, 4708–4716. https://aclanthology.org/2022.lrec-1.503
[30]
Thomas Elmar Kolb. 2022. Dynamic sentiment analysis for measuring media bias. Diploma Thesis. Technische Universität Wien, Wien. https://doi.org/10.34726/hss.2022.73300
[31]
Thomas Elmar Kolb, Irina Nalis, Mete Sertkan, and Julia Neidhardt. 2022. The Role of Bias in News Recommendation in the Perception of the Covid-19 Pandemic. In Proceedings of the 5th FAccTRec Workshop on Responsible Recommendation (FAccTRec ’22) co-located with the 2022 ACM Conference on Recommender Systems. https://doi.org/10.48550/ARXIV.2209.07608
[32]
Thomas Elmar Kolb, Irina Nalis-Neuner, and Julia Neidhardt. 2023. Like a Skilled DJ - an Expert Study on News Recommendations Beyond Accuracy. In Proceedings of the International Workshop on News Recommendation and Analytics co-located with the 2023 ACM Conference on Recommender Systems (RecSys 2023)(CEUR Workshop Proceedings, Vol. 3561), Benjamin Kille (Ed.). CEUR-WS.org. https://doi.org/10.34726/5332
[33]
Thomas Elmar Kolb, Ahmadou Wagne, Mete Sertkan, and Julia Neidhardt. 2023. Potentials of Combining Local Knowledge and LLMs for Recommender Systems(CEUR Workshop Proceedings, Vol. 3560), Vito Walter Anelli, Pierpaolo Basile, Gerard De Melo, Francesco Donini, Antonio Ferrara, Cataldo Musto, Fedelucio Narducci, Azzurra Ragone, and Markus Zanker (Eds.). CEUR-WS.org, 61–64. https://doi.org/10.34726/5334
[34]
Preethi Lahoti, Nicholas Blumm, Xiao Ma, Raghavendra Kotikalapudi, Sahitya Potluri, Qijun Tan, Hansa Srinivasan, Ben Packer, Ahmad Beirami, Alex Beutel, and Jilin Chen. 2023. Improving Diversity of Demographic Representation in Large Language Models via Collective-Critiques and Self-Voting. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational Linguistics, Singapore, 10383–10405. https://doi.org/10.18653/v1/2023.emnlp-main.643
[35]
Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Kuttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. ArXiv abs/2005.11401 (2020). https://api.semanticscholar.org/CorpusID:218869575
[36]
Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep, and Rodrigo Nogueira. 2021. Pyserini: A Python Toolkit for Reproducible Information Retrieval Research with Sparse and Dense Representations. In Proceedings of the 44th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2021). 2356–2362.
[37]
Zhongzhou Liu, Yuan Fang, and Min Wu. 2023. Mitigating Popularity Bias for Users and Items with Fairness-Centric Adaptive Recommendation. ACM Trans. Inf. Syst. 41, 3 (Feb. 2023). https://doi.org/10.1145/3564286 Place: New York, NY, USA Publisher: Association for Computing Machinery.
[38]
Varun Magesh, Faiz Surani, Matthew Dahl, Mirac Suzgun, Christopher D. Manning, and Daniel E. Ho. 2024. Hallucination-Free? Assessing the Reliability of Leading AI Legal Research Tools. _eprint: 2405.20362.
[39]
Nicolas Mattis, Philipp Masur, Judith Möller, and Wouter van Atteveldt. 2022. Nudging towards news diversity: A theoretical framework for facilitating diverse news consumption through recommender design. New Media & Society (June 2022), 146144482211044. https://doi.org/10.1177/14614448221104413
[40]
Sean M. McNee, John Riedl, and Joseph A. Konstan. 2006. Being Accurate is Not Enough: How Accuracy Metrics Have Hurt Recommender Systems. In CHI ’06 Extended Abstracts on Human Factors in Computing Systems(CHI EA ’06). Association for Computing Machinery, New York, NY, USA, 1097–1101. https://doi.org/10.1145/1125451.1125659 event-place: Montréal, Québec, Canada.
[41]
Lien Michiels, Jens Leysen, Annelien Smets, and Bart Goethals. 2022. What Are Filter Bubbles Really? A Review of the Conceptual and Empirical Work. In Adjunct Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization. ACM, Barcelona Spain, 274–279. https://doi.org/10.1145/3511047.3538028
[42]
Isabelle Mohr, Markus Krimmel, Saba Sturua, Mohammad Kalim Akram, Andreas Koukounas, Michael Günther, Georgios Mastrapas, Vinit Ravishankar, Joan Fontanals Martínez, Feng Wang, and others. 2024. Multi-Task Contrastive Learning for 8192-Token Bilingual Text Embeddings. arXiv preprint arXiv:2402.17016 (2024).
[43]
Mohammadmehdi Naghiaei, Hossein A. Rahmani, and Mahdi Dehghan. 2022. The Unfairness of Popularity Bias in Book Recommendation. http://arxiv.org/abs/2202.13446 arXiv:2202.13446 [cs].
[44]
Julia Neidhardt and Mete Sertkan. 2022. Towards an Approach for Analyzing Dynamic Aspects of Bias and Beyond-Accuracy Measures. In Advances in Bias and Fairness in Information Retrieval(Communications in Computer and Information Science), Ludovico Boratto, Stefano Faralli, Mirko Marras, and Giovanni Stilo (Eds.). Springer International Publishing, Cham, 35–42. https://doi.org/10.1007/978-3-031-09316-6_4
[45]
Stephen Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance Framework: BM25 and Beyond. Found. Trends Inf. Retr. 3, 4 (April 2009), 333–389. https://doi.org/10.1561/1500000019 Place: Hanover, MA, USA Publisher: Now Publishers Inc.
[46]
Felix Scholz, Thomas Elmar Kolb, and Julia Neidhardt. 2024. Classifying User Roles in Online News Forums: A Model for User Interaction and Behavior Analysis. In Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization (UMAP Adjunct ’24). ACM, New York, NY, USA, 10. https://doi.org/10.1145/3631700.3665187
[47]
Nasim Sonboli, Robin Burke, Michael Ekstrand, and Rishabh Mehrotra. 2022. The Multisided Complexity of Fairness in Recommender Systems. AI Magazine 43, 2 (June 2022), 164–176. https://doi.org/10.1002/aaai.12054 Section: Special Topic Articles.
[48]
Toni G. L. A. Van der Meer, Michael Hameleers, and Anne C. Kroon. 2020. Crafting Our Own Biased Media Diets: The Effects of Confirmation, Source, and Negativity Bias on Selective Attendance to Online News. Mass Communication and Society 23, 6 (Nov. 2020), 937–967. https://doi.org/10.1080/15205436.2020.1782432
[49]
Yifan Wang, Weizhi Ma, Min Zhang, Yiqun Liu, and Shaoping Ma. 2023. A Survey on the Fairness of Recommender Systems. ACM Trans. Inf. Syst. 41, 3 (Feb. 2023). https://doi.org/10.1145/3547333 Place: New York, NY, USA Publisher: Association for Computing Machinery.
[50]
Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen Zhu, Hengshu Zhu, Qi Liu, Hui Xiong, and Enhong Chen. 2023. A Survey on Large Language Models for Recommendation. _eprint: 2305.19860.
[51]
Hao Yang, Zhining Liu, Zeyu Zhang, Chenyi Zhuang, and Xu Chen. 2023. Towards Robust Fairness-aware Recommendation. In Proceedings of the 17th ACM Conference on Recommender Systems(RecSys ’23). Association for Computing Machinery, New York, NY, USA, 211–222. https://doi.org/10.1145/3604915.3608784 event-place: Singapore, Singapore.
[52]
Hao Yang, Xian Wu, Zhaopeng Qiu, Yefeng Zheng, and Xu Chen. 2024. Distributional Fairness-aware Recommendation. ACM Trans. Inf. Syst. 42, 5 (April 2024). https://doi.org/10.1145/3652854 Place: New York, NY, USA Publisher: Association for Computing Machinery.
[53]
Tianzi Zang, Yanmin Zhu, Haobing Liu, Ruohan Zhang, and Jiadi Yu. 2022. A Survey on Cross-Domain Recommendation: Taxonomies, Methods, and Future Directions. ACM Trans. Inf. Syst. 41, 2 (Dec. 2022). https://doi.org/10.1145/3548455 Place: New York, NY, USA Publisher: Association for Computing Machinery.
[54]
Jizhi Zhang, Keqin Bao, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. 2023. Is ChatGPT Fair for Recommendation? Evaluating Fairness in Large Language Model Recommendation. In Proceedings of the 17th ACM Conference on Recommender Systems(RecSys ’23). Association for Computing Machinery, New York, NY, USA, 993–999. https://doi.org/10.1145/3604915.3608860 event-place: Singapore, Singapore.
[55]
Wayne Xin Zhao, Yupeng Hou, Xingyu Pan, Chen Yang, Zeyu Zhang, Zihan Lin, Jingsen Zhang, Shuqing Bian, Jiakai Tang, Wenqi Sun, Yushuo Chen, Lanling Xu, Gaowei Zhang, Zhen Tian, Changxin Tian, Shanlei Mu, Xinyan Fan, Xu Chen, and Ji-Rong Wen. 2022. RecBole 2.0: Towards a More Up-to-Date Recommendation Library. arXiv preprint arXiv:2206.07351 (2022).
[56]
Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Yushuo Chen, Xingyu Pan, Kaiyuan Li, Yujie Lu, Hui Wang, Changxin Tian, Yingqian Min, Zhichao Feng, Xinyan Fan, Xu Chen, Pengfei Wang, Wendi Ji, Yaliang Li, Xiaoling Wang, and Ji-Rong Wen. 2021. RecBole: Towards a Unified, Comprehensive and Efficient Framework for Recommendation Algorithms. In CIKM. ACM, 4653–4664.
[57]
Zihuai Zhao, Wenqi Fan, Jiatong Li, Yunqing Liu, Xiaowei Mei, Yiqi Wang, Zhen Wen, Fei Wang, Xiangyu Zhao, Jiliang Tang, and Qing Li. 2024. Recommender Systems in the Era of Large Language Models (LLMs). IEEE Transactions on Knowledge and Data Engineering (2024), 1–20. https://doi.org/10.1109/TKDE.2024.3392335
[58]
Yongchun Zhu, Zhenwei Tang, Yudan Liu, Fuzhen Zhuang, Ruobing Xie, Xu Zhang, Leyu Lin, and Qing He. 2022. Personalized Transfer of User Preferences for Cross-Domain Recommendation. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining(WSDM ’22). Association for Computing Machinery, New York, NY, USA, 1507–1515. https://doi.org/10.1145/3488560.3498392 event-place: Virtual Event, AZ, USA.

Index Terms

  1. Enhancing Cross-Domain Recommender Systems with LLMs: Evaluating Bias and Beyond-Accuracy Measures

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    RecSys '24: Proceedings of the 18th ACM Conference on Recommender Systems
    October 2024
    1438 pages
    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 08 October 2024

    Check for updates

    Author Tags

    1. LLMs
    2. beyond-accuracy
    3. bias
    4. cross-domain recommender systems

    Qualifiers

    • Extended-abstract
    • Research
    • Refereed limited

    Funding Sources

    Conference

    Acceptance Rates

    Overall Acceptance Rate 254 of 1,295 submissions, 20%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 130
      Total Downloads
    • Downloads (Last 12 months)130
    • Downloads (Last 6 weeks)130
    Reflects downloads up to 10 Nov 2024

    Other Metrics

    Citations

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media