Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article
Open access

SimuQ: A Framework for Programming Quantum Hamiltonian Simulation with Analog Compilation

Published: 05 January 2024 Publication History

Abstract

Quantum Hamiltonian simulation, which simulates the evolution of quantum systems and probes quantum phenomena, is one of the most promising applications of quantum computing. Recent experimental results suggest that Hamiltonian-oriented analog quantum simulation would be advantageous over circuit-oriented digital quantum simulation in the Noisy Intermediate-Scale Quantum (NISQ) machine era. However, programming analog quantum simulators is much more challenging due to the lack of a unified interface between hardware and software. In this paper, we design and implement SimuQ, the first framework for quantum Hamiltonian simulation that supports Hamiltonian programming and pulse-level compilation to heterogeneous analog quantum simulators. Specifically, in SimuQ, front-end users specify the target quantum system with Hamiltonian Modeling Language, and the Hamiltonian-level programmability of analog quantum simulators is specified through a new abstraction called the abstract analog instruction set (AAIS) and programmed in AAIS Specification Language by hardware providers. Through a solver-based compilation, SimuQ generates executable pulse schedules for real devices to simulate the evolution of desired quantum systems, which is demonstrated on superconducting (IBM), neutral-atom (QuEra), and trapped-ion (IonQ) quantum devices. Moreover, we demonstrate the advantages of exposing the Hamiltonian-level programmability of devices with native operations or interaction-based gates and establish a small benchmark of quantum simulation to evaluate SimuQ's compiler with the above analog quantum simulators.

References

[1]
Ali J Abhari, Arvin Faruque, Mohammad J Dousti, Lukas Svec, Oana Catu, Amlan Chakrabati, Chen-Fu Chiang, Seth Vanderwilt, John Black, and Fred Chong. 2012. Scaffold: Quantum programming language. Princeton Univ NJ Dept of Computer Science.
[2]
Sara Achour and Martin Rinard. 2020. Noise-Aware Dynamical System Compilation for Analog Devices with Legno. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’20). Association for Computing Machinery, New York, NY, USA. 149–166. isbn:9781450371025 https://doi.org/10.1145/3373376.3378449
[3]
Sara Achour, Rahul Sarpeshkar, and Martin C. Rinard. 2016. Configuration Synthesis for Programmable Analog Devices with Arco. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’16). Association for Computing Machinery, New York, NY, USA. 177–193. isbn:9781450342612 https://doi.org/10.1145/2908080.2908116
[4]
Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello, Yael Ben-Haim, David Bucher, F Jose Cabrera-Hernández, Jorge Carballo-Franquis, Adrian Chen, and Chun-Fu Chen. 2019. Qiskit: An open-source framework for quantum computing. Accessed on: Mar, 16 (2019), https://doi.org/10.5281/zenodo.2562110
[5]
Thomas Alexander, Naoki Kanazawa, Daniel J Egger, Lauren Capelluto, Christopher J Wood, Ali Javadi-Abhari, and David C McKay. 2020. Qiskit pulse: Programming quantum computers through the cloud with pulses. Quantum Science and Technology, 5, 4 (2020), 044006. https://doi.org/10.1088/2058-9565/aba404
[6]
Assa Auerbach. 1998. Interacting electrons and quantum magnetism. Springer Science & Business Media. https://doi.org/10.1007/978-1-4612-0869-3
[7]
John Backus. 1978. The History of Fortran I, II, and III. Association for Computing Machinery, New York, NY, USA. 25–74. isbn:0127450408 https://doi.org/10.1145/800025.1198345
[8]
Lindsay Bassman, Connor Powers, and Wibe A. De Jong. 2022. ArQTiC: A Full-Stack Software Package for Simulating Materials on Quantum Computers. ACM Transactions on Quantum Computing, 3, 3 (2022), Article 17, jun, 17 pages. https://doi.org/10.1145/3511715
[9]
Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Soonwon Choi, Alexander S Zibrov, Manuel Endres, and Markus Greiner. 2017. Probing many-body dynamics on a 51-atom quantum simulator. Nature, 551, 7682 (2017), 579–584. https://doi.org/10.1038/nature24622
[10]
Colin D Bruzewicz, John Chiaverini, Robert McConnell, and Jeremy M Sage. 2019. Trapped-ion quantum computing: Progress and challenges. Applied Physics Reviews, 6, 2 (2019), https://doi.org/10.1063/1.5088164
[11]
Yudong Cao, Jonathan Romero, Jonathan P Olson, Matthias Degroote, Peter D Johnson, Mária Kieferová, Ian D Kivlichan, Tim Menke, Borja Peropadre, and Nicolas PD Sawaya. 2019. Quantum chemistry in the age of quantum computing. Chemical reviews, 119, 19 (2019), 10856–10915. https://doi.org/10.1021/acs.chemrev.8b00803
[12]
Bikas K Chakrabarti, Amit Dutta, and Parongama Sen. 2008. Quantum Ising phases and transitions in transverse Ising models. 41, Springer Science & Business Media. https://doi.org/10.1007/978-3-642-33039-1
[13]
Andrew M Childs. 2010. On the relationship between continuous-and discrete-time quantum walk. Communications in Mathematical Physics, 294 (2010), 581–603. https://doi.org/10.1007/s00220-009-0930-1
[14]
Andrew M Childs. 2017. Lecture notes on quantum algorithms. Lecture notes at University of Maryland.
[15]
Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross, and Yuan Su. 2018. Toward the first quantum simulation with quantum speedup. Proceedings of the National Academy of Sciences, 115, 38 (2018), 9456–9461. https://doi.org/10.1073/pnas.1801723115
[16]
Andrew M Childs, Yuan Su, Minh C Tran, Nathan Wiebe, and Shuchen Zhu. 2021. Theory of trotter error with commutator scaling. Physical Review X, 11, 1 (2021), 011020. https://doi.org/10.1103/PhysRevX.11.011020
[17]
Andrew M Childs and Nathan Wiebe. 2012. Hamiltonian simulation using linear combinations of unitary operations. arXiv preprint arXiv:1202.5822, https://doi.org/10.48550/arXiv.1202.5822
[18]
Laura Clinton, Johannes Bausch, and Toby Cubitt. 2021. Hamiltonian simulation algorithms for near-term quantum hardware. Nature communications, 12, 1 (2021), 4989. https://doi.org/10.1038/s41467-021-25196-0
[19]
Andrew Cross. 2018. The IBM Q experience and QISKit open-source quantum computing software. In APS March meeting abstracts. 2018, L58–003.
[20]
Andrew Cross, Ali Javadi-Abhari, Thomas Alexander, Niel De Beaudrap, Lev S. Bishop, Steven Heidel, Colm A. Ryan, Prasahnt Sivarajah, John Smolin, Jay M. Gambetta, and Blake R. Johnson. 2022. OpenQASM 3: A Broader and Deeper Quantum Assembly Language. ACM Transactions on Quantum Computing, 3, 3 (2022), Article 12, sep, 50 pages. issn:2643-6809 https://doi.org/10.1145/3505636
[21]
Shantanu Debnath, Norbert M Linke, Caroline Figgatt, Kevin A Landsman, Kevin Wright, and Christopher Monroe. 2016. Demonstration of a small programmable quantum computer with atomic qubits. Nature, 536, 7614 (2016), 63–66. https://doi.org/10.1038/nature18648
[22]
Nathan Earnest, Caroline Tornow, and Daniel J Egger. 2021. Pulse-efficient circuit transpilation for quantum applications on cross-resonance-based hardware. Physical Review Research, 3, 4 (2021), 043088. https://doi.org/10.1103/PhysRevResearch.3.043088
[23]
Sepehr Ebadi, Tout T Wang, Harry Levine, Alexander Keesling, Giulia Semeghini, Ahmed Omran, Dolev Bluvstein, Rhine Samajdar, Hannes Pichler, and Wen Wei Ho. 2021. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature, 595, 7866 (2021), 227–232. https://doi.org/10.1038/s41586-021-03582-4
[24]
Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028, https://doi.org/10.48550/arXiv.1411.4028
[25]
Richard P Feynman. 1982. Simulating physics with computers. International journal of theoretical physics, 21, 6/7 (1982), 467–488. https://doi.org/10.1007/BF02650179
[26]
WMC Foulkes, Lubos Mitas, RJ Needs, and Guna Rajagopal. 2001. Quantum Monte Carlo simulations of solids. Reviews of Modern Physics, 73, 1 (2001), 33. https://doi.org/10.1103/RevModPhys.73.33
[27]
Sicun Gao, Soonho Kong, and Edmund M Clarke. 2013. dReal: An SMT solver for nonlinear theories over the reals. In Automated Deduction–CADE-24: 24th International Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings 24. 208–214. https://doi.org/10.1007/978-3-642-38574-2_14
[28]
Alexey Vyacheslavovich Gorshkov, M Hermele, V Gurarie, C Xu, Paul S Julienne, J Ye, Peter Zoller, Eugene Demler, Mikhail D Lukin, and AM Rey. 2010. Two-orbital SU (N) magnetism with ultracold alkaline-earth atoms. Nature physics, 6, 4 (2010), 289–295. https://doi.org/10.1038/nphys1535
[29]
Daniel Gottesman. 2010. An introduction to quantum error correction and fault-tolerant quantum computation. In Quantum information science and its contributions to mathematics, Proceedings of Symposia in Applied Mathematics. 68, 13–58. https://doi.org/10.48550/arXiv.0904.2557
[30]
Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron. 2013. Quipper: A Scalable Quantum Programming Language. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’13). Association for Computing Machinery, New York, NY, USA. 333–342. isbn:9781450320146 https://doi.org/10.1145/2491956.2462177
[31]
Sean Greenaway, Adam Smith, Florian Mintert, and Daniel Malz. 2022. Analogue Quantum Simulation with Fixed-Frequency Transmon Qubits. arXiv preprint arXiv:2211.16439, https://doi.org/10.48550/arXiv.2211.16439
[32]
Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure, dynamics, and function using NetworkX. Los Alamos National Lab.(LANL), Los Alamos, NM (United States).
[33]
Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks. 2021. A Verified Optimizer for Quantum Circuits. Proc. ACM Program. Lang., 5, POPL (2021), Article 37, jan, 29 pages. https://doi.org/10.1145/3434318
[34]
Walter Hofstetter and Tao Qin. 2018. Quantum simulation of strongly correlated condensed matter systems. Journal of Physics B: Atomic, Molecular and Optical Physics, 51, 8 (2018), 082001. https://doi.org/10.1088/1361-6455/aaa31b
[35]
J.R. Johansson, P.D. Nation, and Franco Nori. 2012. QuTiP: An open-source Python framework for the dynamics of open quantum systems. Computer Physics Communications, 183, 8 (2012), 1760–1772. issn:0010-4655 https://doi.org/10.1016/j.cpc.2012.02.021
[36]
A Yu Kitaev. 1997. Quantum computations: algorithms and error correction. Russian Mathematical Surveys, 52, 6 (1997), 1191. https://doi.org/10.1070/RM1997v052n06ABEH002155
[37]
Christoph Kloeffel and Daniel Loss. 2013. Prospects for spin-based quantum computing in quantum dots. Annu. Rev. Condens. Matter Phys., 4, 1 (2013), 51–81. https://doi.org/10.1146/annurev-conmatphys-030212-184248
[38]
Henning Labuhn, Daniel Barredo, Sylvain Ravets, Sylvain De Léséleuc, Tommaso Macrì, Thierry Lahaye, and Antoine Browaeys. 2016. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models. Nature, 534, 7609 (2016), 667–670. https://doi.org/10.1038/nature18274
[39]
David Lauvergnat, Sophie Blasco, Xavier Chapuisat, and André Nauts. 2007. A simple and efficient evolution operator for time-dependent Hamiltonians: the Taylor expansion. The Journal of chemical physics, 126, 20 (2007), 204103. https://doi.org/10.1063/1.2735315
[40]
Jiaqi Leng, Ethan Hickman, Joseph Li, and Xiaodi Wu. 2023. Quantum Hamiltonian Descent. arXiv preprint arXiv:2303.01471, https://doi.org/10.48550/arXiv.2303.01471
[41]
Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, and Yuan Xie. 2022. Paulihedral: A Generalized Block-Wise Compiler Optimization Framework for Quantum Simulation Kernels. In Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’22). Association for Computing Machinery, New York, NY, USA. 554–569. isbn:9781450392051 https://doi.org/10.1145/3503222.3507715
[42]
Seth Lloyd. 1996. Universal quantum simulators. Science, 273, 5278 (1996), 1073–1078. https://doi.org/10.1126/science.273.5278.1073
[43]
Guang Hao Low and Isaac L Chuang. 2017. Optimal Hamiltonian simulation by quantum signal processing. Physical review letters, 118, 1 (2017), 010501. https://doi.org/10.1103/PhysRevLett.118.010501
[44]
Moein Malekakhlagh, Easwar Magesan, and David C McKay. 2020. First-principles analysis of cross-resonance gate operation. Physical Review A, 102, 4 (2020), 042605. https://doi.org/10.1103/PhysRevA.102.042605
[45]
Jarrod R McClean, Nicholas C Rubin, Kevin J Sung, Ian D Kivlichan, Xavier Bonet-Monroig, Yudong Cao, Chengyu Dai, E Schuyler Fried, Craig Gidney, and Brendan Gimby. 2020. OpenFermion: the electronic structure package for quantum computers. Quantum Science and Technology, 5, 3 (2020), 034014. https://doi.org/10.1088/2058-9565/ab8ebc
[46]
David C McKay, Christopher J Wood, Sarah Sheldon, Jerry M Chow, and Jay M Gambetta. 2017. Efficient Z gates for quantum computing. Physical Review A, 96, 2 (2017), 022330. https://doi.org/10.1103/PhysRevA.96.022330
[47]
Felix Motzoi, Jay M Gambetta, Patrick Rebentrost, and Frank K Wilhelm. 2009. Simple pulses for elimination of leakage in weakly nonlinear qubits. Physical review letters, 103, 11 (2009), 110501. https://doi.org/10.1103/PhysRevLett.103.110501
[48]
Prakash Murali, David C McKay, Margaret Martonosi, and Ali Javadi-Abhari. 2020. Software mitigation of crosstalk on noisy intermediate-scale quantum computers. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems. 1001–1016. https://doi.org/10.1145/3373376.3378477
[49]
Benjamin Nachman, Davide Provasoli, Wibe A De Jong, and Christian W Bauer. 2021. Quantum algorithm for high energy physics simulations. Physical review letters, 126, 6 (2021), 062001. https://doi.org/10.1103/PhysRevLett.126.062001
[50]
Michael A Nielsen and Isaac Chuang. 2002. Quantum computation and quantum information. https://doi.org/10.1017/CBO9780511976667
[51]
Kristen Nygaard and Ole-Johan Dahl. 1978. The Development of the SIMULA Languages. Association for Computing Machinery, New York, NY, USA. 439–480. isbn:0127450408 https://doi.org/10.1145/800025.1198392
[52]
Jeremy L. O’brien, Akira Furusawa, and Jelena Vučković. 2009. Photonic quantum technologies. Nature Photonics, 3, 12 (2009), 687–695. https://doi.org/10.1038/nphoton.2009.229
[53]
Jennifer Paykin, Robert Rand, and Steve Zdancewic. 2017. QWIRE: a core language for quantum circuits. ACM SIGPLAN Notices, 52, 1 (2017), 846–858. https://doi.org/10.1145/3009837.3009894
[54]
Yuxiang Peng, Jacob Young, Pengyu Liu, and Xiaodi Wu. 2023. Artifact for SimuQ: a Framework for Programming Quantum Hamiltonian Simulation with Analog Compilation. https://doi.org/10.5281/zenodo.8423710
[55]
Yuxiang Peng, Jacob Young, Pengyu Liu, and Xiaodi Wu. 2023. SimuQ: A Framework for Programming Quantum Hamiltonian Simulation with Analog Compilation (Extended Version). arXiv preprint arXiv:2303.02775, https://doi.org/10.48550/arXiv.2303.02775
[56]
Connor Powers, Lindsay Bassman, Thomas M. Linker, Ken ichi Nomura, Sahil Gulania, Rajiv K. Kalia, Aiichiro Nakano, and Priya Vashishta. 2021. MISTIQS: An open-source software for performing quantum dynamics simulations on quantum computers. SoftwareX, 14 (2021), 100696. issn:2352-7110 https://doi.org/10.1016/j.softx.2021.100696
[57]
John Preskill. 2018. Quantum computing in the NISQ era and beyond. Quantum, 2 (2018), 79. https://doi.org/10.22331/q-2018-08-06-79
[58]
QuEra. 2022. Bloqade: a Julia package for quantum computation and quantum dynamics based on neutral-atom architectures. https://queracomputing.github.io/Bloqade.jl/dev/
[59]
Mark Saffman. 2016. Quantum computing with atomic qubits and Rydberg interactions: progress and challenges. Journal of Physics B: Atomic, Molecular and Optical Physics, 49, 20 (2016), 202001. https://doi.org/10.1088/0953-4075/49/20/202001
[60]
Peter Schauss. 2018. Quantum simulation of transverse Ising models with Rydberg atoms. Quantum Science and Technology, 3, 2 (2018), 023001. https://doi.org/10.1088/2058-9565/aa9c59
[61]
Albert T Schmitz, Nicolas PD Sawaya, Sonika Johri, and AY Matsuura. 2021. Graph optimization perspective for low-depth Trotter-Suzuki decomposition. arXiv preprint arXiv:2103.08602, https://doi.org/10.48550/arXiv.2103.08602
[62]
Ulrich Schollwöck. 2005. The density-matrix renormalization group. Reviews of modern physics, 77, 1 (2005), 259. https://doi.org/10.1103/RevModPhys.77.259
[63]
Ulrich Schollwöck. 2011. The density-matrix renormalization group in the age of matrix product states. Annals of physics, 326, 1 (2011), 96–192. https://doi.org/10.1016/j.aop.2010.09.012
[64]
G. Semeghini, H. Levine, A. Keesling, S. Ebadi, T. T. Wang, D. Bluvstein, R. Verresen, H. Pichler, M. Kalinowski, R. Samajdar, A. Omran, S. Sachdev, A. Vishwanath, M. Greiner, V. Vuletić, and M. D. Lukin. 2021. Probing topological spin liquids on a programmable quantum simulator. Science, 374, 6572 (2021), 1242–1247. https://doi.org/10.1126/science.abi8794
[65]
Yunong Shi, Pranav Gokhale, Prakash Murali, Jonathan M. Baker, Casey Duckering, Yongshan Ding, Natalie C. Brown, Christopher Chamberland, Ali Javadi-Abhari, Andrew W. Cross, David I. Schuster, Kenneth R. Brown, Margaret Martonosi, and Frederic T. Chong. 2020. Resource-Efficient Quantum Computing by Breaking Abstractions. Proc. IEEE, 108, 8 (2020), 1353–1370. https://doi.org/10.1109/JPROC.2020.2994765
[66]
Henrique Silvério, Sebastián Grijalva, Constantin Dalyac, Lucas Leclerc, Peter J. Karalekas, Nathan Shammah, Mourad Beji, Louis-Paul Henry, and Loïc Henriet. 2022. Pulser: An open-source package for the design of pulse sequences in programmable neutral-atom arrays. Quantum, 6 (2022), Jan., 629. issn:2521-327X https://doi.org/10.22331/q-2022-01-24-629
[67]
Anders Sørensen and Klaus Mølmer. 2000. Entanglement and quantum computation with ions in thermal motion. Physical Review A, 62, 2 (2000), 022311. https://doi.org/10.1103/PhysRevA.62.022311
[68]
John PT Stenger, Nicholas T Bronn, Daniel J Egger, and David Pekker. 2021. Simulating the dynamics of braiding of Majorana zero modes using an IBM quantum computer. Physical Review Research, 3, 3 (2021), 033171. https://doi.org/10.1103/PhysRevResearch.3.033171
[69]
Bochen Tan and Jason Cong. 2020. Optimal layout synthesis for quantum computing. In Proceedings of the 39th International Conference on Computer-Aided Design. 1–9. https://doi.org/10.1145/3400302.3415620
[70]
Swamit S Tannu and Moinuddin K Qureshi. 2019. Mitigating measurement errors in quantum computers by exploiting state-dependent bias. In Proceedings of the 52nd annual IEEE/ACM international symposium on microarchitecture. 279–290. https://doi.org/10.1145/3352460.3358265
[71]
Ewout Van Den Berg and Kristan Temme. 2020. Circuit optimization of Hamiltonian simulation by simultaneous diagonalization of Pauli clusters. Quantum, 4 (2020), 322. https://doi.org/10.22331/q-2020-09-12-322
[72]
Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, and Jonathan Bright. 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature methods, 17, 3 (2020), 261–272. https://doi.org/10.1038/s41592-019-0686-2
[73]
Göran Wendin. 2017. Quantum information processing with superconducting circuits: a review. Reports on Progress in Physics, 80, 10 (2017), 106001. https://doi.org/10.1088/1361-6633/aa7e1a
[74]
Bing Yang, Hui Sun, Robert Ott, Han-Yi Wang, Torsten V Zache, Jad C Halimeh, Zhen-Sheng Yuan, Philipp Hauke, and Jian-Wei Pan. 2020. Observation of gauge invariance in a 71-site Bose–Hubbard quantum simulator. Nature, 587, 7834 (2020), 392–396. https://doi.org/10.1038/s41586-020-2910-8
[75]
Erez Zohar, J Ignacio Cirac, and Benni Reznik. 2015. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Reports on Progress in Physics, 79, 1 (2015), 014401. https://doi.org/10.1088/0034-4885/79/1/014401

Cited By

View all
  • (2024)What is Quantum Parallelism, Anyhow?ISC High Performance 2024 Research Paper Proceedings (39th International Conference)10.23919/ISC.2024.10528926(1-12)Online publication date: May-2024
  • (2024)Error Mitigation of Hamiltonian Simulations from an Analog-Based Compiler (SimuQ)2024 IEEE International Conference on Quantum Computing and Engineering (QCE)10.1109/QCE60285.2024.00031(181-187)Online publication date: 15-Sep-2024
  • (2024)Quantum-centric supercomputing for materials scienceFuture Generation Computer Systems10.1016/j.future.2024.04.060160:C(666-710)Online publication date: 1-Nov-2024

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Proceedings of the ACM on Programming Languages
Proceedings of the ACM on Programming Languages  Volume 8, Issue POPL
January 2024
2820 pages
EISSN:2475-1421
DOI:10.1145/3554315
Issue’s Table of Contents
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 05 January 2024
Published in PACMPL Volume 8, Issue POPL

Permissions

Request permissions for this article.

Check for updates

Badges

Author Tags

  1. analog quantum computing
  2. pulse-level programming
  3. quantum simulation

Qualifiers

  • Research-article

Funding Sources

  • U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Quantum Testbed Pathfinder Program
  • Air Force Office of Scientific Research
  • U.S. National Science Foundation grant
  • Sloan research fellowship

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)498
  • Downloads (Last 6 weeks)55
Reflects downloads up to 08 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)What is Quantum Parallelism, Anyhow?ISC High Performance 2024 Research Paper Proceedings (39th International Conference)10.23919/ISC.2024.10528926(1-12)Online publication date: May-2024
  • (2024)Error Mitigation of Hamiltonian Simulations from an Analog-Based Compiler (SimuQ)2024 IEEE International Conference on Quantum Computing and Engineering (QCE)10.1109/QCE60285.2024.00031(181-187)Online publication date: 15-Sep-2024
  • (2024)Quantum-centric supercomputing for materials scienceFuture Generation Computer Systems10.1016/j.future.2024.04.060160:C(666-710)Online publication date: 1-Nov-2024

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media