Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3626111.3628176acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Open access

A Holistic View of AI-driven Network Incident Management

Published: 28 November 2023 Publication History

Abstract

We discuss the potential improvement large language models (LLM) can provide in incident management and how they can overhaul the ways operators conduct incident management today. We propose a holistic framework for building an AI helper for incident management and discuss the several avenues of future research needed to achieve it.
We thoroughly analyze the fundamental requirements the community should consider when designing such helpers. Our work is based on discussions with operators of a large public cloud provider and their prior experiences both in incident management and with attempts to improve the incident management experience through various forms of automation.

References

[1]
Toufique Ahmed, Supriyo Ghosh, Chetan Bansal, Thomas Zimmermann, Xuchao Zhang, and Saravan Rajmohan. 2023. Recommending Root-Cause and Mitigation Steps for Cloud Incidents using Large Language Models. (2023). arXiv:cs.SE/2301.03797 https://arxiv.org/abs/2301.03797 ICSE'23.
[2]
Omid Alipourfard, Jiaqi Gao, Jeremie Koenig, Chris Harshaw, Amin Vahdat, and Minlan Yu. 2019. Risk-based planning of network changes in evolving data centers. In Proceedings of the 27th ACM Symposium on Operating Systems Principles. 414--429.
[3]
Abdullah Alomar, Pouya Hamadanian, Arash Nasr-Esfahany, Anish Agarwal, Mohammad Alizadeh, and Devavrat Shah. 2023. CausalSim: A Causal Framework for Unbiased Trace-Driven Simulation. In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23). USENIX Association, Boston, MA, 1115--1147. https://www.usenix.org/conference/nsdi23/presentation/alomar
[4]
Behnaz Arzani, Kevin Hsieh, and Haoxian Chen. 2021. Interpret-able feedback for AutoML systems. (2021). arXiv:cs.LG/2102.11267 https://arxiv.org/abs/2102.11267
[5]
Microsoft Azure. 2023. Post Incident Review (PIR) -- Azure Networking -- Global WAN issues. (2023). https://azure.status.microsoft/en-us/status/history/ https://azure.status.microsoft/en-us/status/history/, Accessed: 2023-06-26.
[6]
Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Celikyilmaz, and Yejin Choi. 2019. COMET: Commonsense Transformers for Automatic Knowledge Graph Construction. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy, 4762--4779. https://doi.org/10.18653/v1/P19-1470
[7]
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. (2020). arXiv:cs.CL/2005.14165 https://arxiv.org/abs/2005.14165
[8]
Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro, and Yi Zhang. 2023. Sparks of Artificial General Intelligence: Early experiments with GPT-4. (2023). arXiv:cs.CL/2303.12712 https://arxiv.org/abs/2303.12712
[9]
Harrison Chase. 2022. LangChain. (Oct. 2022). https://github.com/hwchase17/langchain https://github.com/hwchase17/langchain, Accessed: 2023-06-26.
[10]
Junjie Chen, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Feng Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. Continuous incident triage for large-scale online service systems. In 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 364--375.
[11]
Junjie Chen, Shu Zhang, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Yu Kang, Feng Gao, Zhangwei Xu, Yingnong Dang, et al. 2020. How incidental are the incidents? characterizing and prioritizing incidents for large-scale online service systems. In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering. 373--384.
[12]
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large Language Models Trained on Code. (2021). arXiv:cs.LG/2107.03374 https://arxiv.org/abs/2107.03374
[13]
Yinfang Chen, Huaibing Xie, Minghua Ma, Yu Kang, Xin Gao, Liu Shi, Yunjie Cao, Xuedong Gao, Hao Fan, Ming Wen, Jun Zeng, Supriyo Ghosh, Xuchao Zhang, Chaoyun Zhang, Qingwei Lin, Saravan Rajmohan, and Dongmei Zhang. 2023. Empowering Practical Root Cause Analysis by Large Language Models for Cloud Incidents. (2023). arXiv:cs.SE/2305.15778 https://arxiv.org/abs/2305.15778
[14]
Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. 2022. PaLM: Scaling Language Modeling with Pathways. (2022). arXiv:cs.CL/2204.02311 https://arxiv.org/abs/2204.02311
[15]
Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for random testing of Haskell programs. In Proceedings of the fifth ACM SIGPLAN international conference on Functional programming. 268--279.
[16]
Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. 2021. Training Verifiers to Solve Math Word Problems. (2021). arXiv:cs.LG/2110.14168 https://arxiv.org/abs/2110.14168
[17]
Meghan Cowan, Saeed Maleki, Madanlal Musuvathi, Olli Saarikivi, and Yifan Xiong. 2022. MSCCL: Microsoft Collective Communication Library. arXiv preprint arXiv:2201.11840 (2022).
[18]
John D Day and Hubert Zimmermann. 1983. The OSI reference model. Proc. IEEE 71, 12 (1983), 1334--1340.
[19]
Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. 2023. Improving Factuality and Reasoning in Language Models through Multiagent Debate. (2023). arXiv:cs.CL/2305.14325 https://arxiv.org/abs/2305.14325
[20]
Marisa Fernandez. 2018. Prime Day woes might have cost Amazon $72m-$99m in sales. (2018). https://www.axios.com/2018/07/18/prime-day-woes-might-have-cost-amazon-from-72-99-million https://www.axios.com/2018/07/18/prime-day-woes-might-have-cost-amazon-from-72-99-million, Accessed: 2023-06-26.
[21]
Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. 2023. Baldur: Whole-Proof Generation and Repair with Large Language Models. (2023). arXiv:cs.LG/2303.04910 https://arxiv.org/abs/2303.04910
[22]
Jiaqi Gao, Nofel Yaseen, Robert MacDavid, Felipe Vieira Frujeri, Vincent Liu, Ricardo Bianchini, Ramaswamy Aditya, Xiaohang Wang, Henry Lee, David Maltz, Minlan Yu, and Behnaz Arzani. 2020. Scouts: Improving the Diagnosis Process Through Domain-Customized Incident Routing. In Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM '20). Association for Computing Machinery, New York, NY, USA, 253--269. https://doi.org/10.1145/3387514.3405867
[23]
Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2022. SimCSE: Simple Contrastive Learning of Sentence Embeddings. (2022). arXiv:cs.CL/2104.08821 https://arxiv.org/abs/2104.08821
[24]
Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat. 2016. Evolve or Die: High-Availability Design Principles Drawn from Google's Network Infrastructure. In Proceedings of the 2016 ACM SIGCOMM Conference. http://dl.acm.org/authorize.cfm?key=N19254
[25]
Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. 2020. REALM: Retrieval-Augmented Language Model Pre-Training. (2020). arXiv:cs.CL/2002.08909 https://arxiv.org/abs/2002.08909
[26]
Jiajun Jiang, Weihai Lu, Junjie Chen, Qingwei Lin, Pu Zhao, Yu Kang, Hongyu Zhang, Yingfei Xiong, Feng Gao, Zhangwei Xu, et al. 2020. How to mitigate the incident? an effective troubleshooting guide recommendation technique for online service systems. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 1410--1420.
[27]
Geunwoo Kim, Pierre Baldi, and Stephen McAleer. 2023. Language Models can Solve Computer Tasks. (2023). arXiv:cs.CL/2303.17491 https://arxiv.org/abs/2303.17491
[28]
Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. 2023. Large Language Models are Zero-Shot Reasoners. (2023). arXiv:cs.CL/2205.11916 https://arxiv.org/abs/2205.11916
[29]
Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. 2017. The quic transport protocol: Design and internet-scale deployment. In Proceedings of the conference of the ACM special interest group on data communication. 183--196.
[30]
Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. FlowRadar: A Better NetFlow for Data Centers. In 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16). USENIX Association, Santa Clara, CA, 311--324. https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-yuliang
[31]
Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S. Yu. 2023. A comprehensive evaluation of ChatGPT's zero-shot Text-to-SQL capability. (2023). arXiv:cs.CL/2303.13547 https://arxiv.org/abs/2303.13547
[32]
Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. 2023. Self-Refine: Iterative Refinement with Self-Feedback. (2023). arXiv:cs.CL/2303.17651 https://arxiv.org/abs/2303.17651
[33]
Microsoft. 2023. LangChain. (Feb. 2023). https://github.com/microsoft/semantic-kernel https://github.com/microsoft/semantic-kernel, Accessed: 2023-06-26.
[34]
Jeffrey C Mogul, Drago Goricanec, Martin Pool, Anees Shaikh, Douglas Turk, Bikash Koley, and Xiaoxue Zhao. 2020. Experiences with Modeling Network Topologies at Multiple Levels of Abstraction. In NSDI. 403--418.
[35]
Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. 2014. DREAM: Dynamic Resource Allocation for Software-defined Measurement. In Proceedings of the ACM SIGCOMM Conference.
[36]
Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. 2016. Trumpet: Timely and Precise Triggers in Data Centers. In ACM SIGCOMM.
[37]
Yohei Nakajima. 2023. Task-driven Autonomous Agent. (April 2023). https://github.com/yoheinakajima/babyagi https://github.com/yoheinakajima/babyagi, Accessed: 2023-06-28.
[38]
Pooria Namyar, Behnaz Arzani, Daniel Crankshaw, Daniel S. Berger, Kevin Hsieh, Srikanth Kandula, and Ramesh Govindan. 2023. Mitigating the Performance Impact of Network Failures in Public Clouds. (2023). arXiv:cs.NI/2305.13792 https://arxiv.org/abs/2305.13792
[39]
Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Augustus Odena. 2021. Show Your Work: Scratchpads for Intermediate Computation with Language Models. (2021). arXiv:cs.LG/2112.00114 https://arxiv.org/abs/2112.00114
[40]
OpenAI. 2023. ChatGPT plugins. (2023). https://openai.com/blog/chatgpt-plugins https://openai.com/blog/chatgpt-plugins, Accessed: 2023-06-26.
[41]
OpenAI. 2023. GPT-4 Technical Report. (2023). arXiv:cs.CL/2303.08774 https://arxiv.org/abs/2303.08774
[42]
Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert West, and Boi Faltings. 2023. REFINER: Reasoning Feedback on Intermediate Representations. (2023). arXiv:cs.CL/2304.01904 https://arxiv.org/abs/2304.01904
[43]
Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. 2023. Toolformer: Language Models Can Teach Themselves to Use Tools. (2023). arXiv:cs.CL/2302.04761 https://arxiv.org/abs/2302.04761
[44]
Amazon Web Services. 2021. Summary of AWS Direct Connect Event in the Tokyo (AP-NORTHEAST-1) Region. (2021). https://aws.amazon.com/message/17908/
[45]
Aashaka Shah, Vijay Chidambaram, Meghan Cowan, Saeed Maleki, Madan Musuvathi, Todd Mytkowicz, Jacob Nelson, and Olli Saarikivi. 2023. TACCL: Guiding Collective Algorithm Synthesis using Communication Sketches. In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23). 593--612.
[46]
Manish Shetty, Chetan Bansal, Sai Pramod Upadhyayula, Arjun Radhakrishna, and Anurag Gupta. 2022. AutoTSG: Learning and Synthesis for Incident Troubleshooting. (2022). arXiv:cs.SE/2205.13457 https://arxiv.org/abs/2205.13457
[47]
Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. 2023. Reflexion: Language Agents with Verbal Reinforcement Learning. (2023). arXiv:cs.AI/2303.11366 https://arxiv.org/abs/2303.11366
[48]
Ruoxi Sun, Sercan O. Arik, Hootan Nakhost, Hanjun Dai, Rajarishi Sinha, Pengcheng Yin, and Tomas Pfister. 2023. SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL. (2023). arXiv:cs.CL/2306.00739 https://arxiv.org/abs/2306.00739
[49]
Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao Wu, Karl Deng, Dongming Bi, and Dong Xiang. 2019. NetBouncer: Active Device and Link Failure Localization in Data Center Networks. In 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19). USENIX Association, Boston, MA, 599--614. https://www.usenix.org/conference/nsdi19/presentation/tan
[50]
Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Manya Ghobadi, Zhihao Jia, Dheevatsa Mudigere, Ying Zhang, and Anthony Kewitsch. 2023. TopoOpt: Co-optimizing Network Topology and Parallelization Strategy for Distributed Training Jobs. In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23). 739--767.
[51]
Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. 2023. Self-Consistency Improves Chain of Thought Reasoning in Language Models. (2023). arXiv:cs.CL/2203.11171 https://arxiv.org/abs/2203.11171
[52]
Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. (2023). arXiv:cs.CL/2201.11903 https://arxiv.org/abs/2201.11903
[53]
Xin Wu, Daniel Turner, Chao-Chih Chen, David A Maltz, Xiaowei Yang, Lihua Yuan, and Ming Zhang. 2012. NetPilot: Automating datacenter network failure mitigation. In Proceedings of the ACM SIGCOMM 2012 conference on Applications, technologies, architectures, and protocols for computer communication. 419--430.
[54]
Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik Narasimhan. 2023. Tree of Thoughts: Deliberate Problem Solving with Large Language Models. (2023). arXiv:cs.CL/2305.10601 https://arxiv.org/abs/2305.10601
[55]
Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. 2022. ReAct: Synergizing Reasoning and Acting in Language Models. arXiv preprint arXiv:2210.03629 (2022).
[56]
Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian Wong, Stefan Welker, Federico Tombari, Aveek Purohit, Michael Ryoo, Vikas Sindhwani, Johnny Lee, Vincent Vanhoucke, and Pete Florence. 2022. Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language. (2022). arXiv:cs.CV/2204.00598 https://arxiv.org/abs/2204.00598
[57]
Shenglin Zhang, Pengxiang Jin, Zihan Lin, Yongqian Sun, Bicheng Zhang, Sibo Xia, Zhengdan Li, Zhenyu Zhong, Minghua Ma, Wa Jin, Dai Zhang, Zhenyu Zhu, and Dan Pei. 2023. Robust Failure Diagnosis of Microservice System through Multimodal Data. (2023). arXiv:cs.SE/2302.10512 https://arxiv.org/abs/2302.10512
[58]
Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-Tycho Förster, Arvind Krishnamurthy, and Thomas Anderson. 2017. Understanding and mitigating packet corruption in data center networks. In Proceedings of the Conference of the ACM Special Interest Group on Data Communication. 362--375.

Cited By

View all
  • (2024)Large Language Models Meet Next-Generation Networking Technologies: A ReviewFuture Internet10.3390/fi1610036516:10(365)Online publication date: 7-Oct-2024
  • (2024)6G-XSec: Explainable Edge Security for Emerging OpenRAN ArchitecturesProceedings of the 23rd ACM Workshop on Hot Topics in Networks10.1145/3696348.3696881(77-85)Online publication date: 18-Nov-2024
  • (2024)ShieldGPT: An LLM-based Framework for DDoS MitigationProceedings of the 8th Asia-Pacific Workshop on Networking10.1145/3663408.3663424(108-114)Online publication date: 3-Aug-2024
  • Show More Cited By

Index Terms

  1. A Holistic View of AI-driven Network Incident Management

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    HotNets '23: Proceedings of the 22nd ACM Workshop on Hot Topics in Networks
    November 2023
    306 pages
    ISBN:9798400704154
    DOI:10.1145/3626111
    This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International 4.0 License.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 28 November 2023

    Check for updates

    Author Tags

    1. Incident Management
    2. Large Language Models

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    HotNets '23
    Sponsor:
    HotNets '23: The 22nd ACM Workshop on Hot Topics in Networks
    November 28 - 29, 2023
    MA, Cambridge, USA

    Acceptance Rates

    Overall Acceptance Rate 110 of 460 submissions, 24%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)747
    • Downloads (Last 6 weeks)93
    Reflects downloads up to 19 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Large Language Models Meet Next-Generation Networking Technologies: A ReviewFuture Internet10.3390/fi1610036516:10(365)Online publication date: 7-Oct-2024
    • (2024)6G-XSec: Explainable Edge Security for Emerging OpenRAN ArchitecturesProceedings of the 23rd ACM Workshop on Hot Topics in Networks10.1145/3696348.3696881(77-85)Online publication date: 18-Nov-2024
    • (2024)ShieldGPT: An LLM-based Framework for DDoS MitigationProceedings of the 8th Asia-Pacific Workshop on Networking10.1145/3663408.3663424(108-114)Online publication date: 3-Aug-2024
    • (2024)NetConfEval: Can LLMs Facilitate Network Configuration?Proceedings of the ACM on Networking10.1145/36562962:CoNEXT2(1-25)Online publication date: 13-Jun-2024

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media