Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3613905.3651087acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
Work in Progress

Guttation Sensor: Wearable Microfluidic Chip for Plant Condition Monitoring and Diagnosis

Published: 11 May 2024 Publication History

Abstract

Plant life plays a critical role in the ecosystem. However, it is difficult for humans to perceive plants’ reactions because the biopotential and biochemical responses are invisible to humans. Guttation droplets contain various chemicals which can reflect plant physiology and environmental conditions in real-time. Traditionally, these droplets are collected manually and analyzed in the lab with expensive instruments. Here, we introduce the Guttation Sensor, the first on-site and low-cost monitoring technology for guttation droplets. This innovative device employs a paper-based wearable microfluidic chip capable of collecting and conducting colorimetric detection of six chemicals. We discuss this technology’s design and implementation, conduct evaluations on tomato plants, and envision how such a technology could enhance the human-plant relationship.

Supplemental Material

References

[1]
Astija Astija. 2020. Soil pH influences the development of tomato root organ (Solanum lycopersicum L.). (12 2020).
[2]
D. Beysens. 1995. The formation of dew. Atmospheric Research 39, 1-3 (Oct. 1995), 215–237. https://doi.org/10.1016/0169-8095(95)00015-j
[3]
Tjeerd Blacquiere, Guy Smagghe, Cornelis AM Van Gestel, and Veerle Mommaerts. 2012. Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21, 4 (2012), 973–992.
[4]
Fadi Botros, Charles Perin, Bon Adriel Aseniero, and Sheelagh Carpendale. 2016. Go and Grow. In Proceedings of the International Working Conference on Advanced Visual Interfaces. ACM. https://doi.org/10.1145/2909132.2909267
[5]
Sally L. Brown, Rufus L. Chaney, and Ganga M. Hettiarachchi. 2016. Lead in Urban Soils: A Real or Perceived Concern for Urban Agriculture?Journal of Environmental Quality 45, 1 (Jan. 2016), 26–36. https://doi.org/10.2134/jeq2015.07.0376
[6]
Sila Deniz Calisgan, Vageeswar Rajaram, Sungho Kang, Antea Risso, Zhenyun Qian, and Matteo Rinaldi. 2020. Micromechanical Switch-Based Zero-Power Chemical Detectors for Plant Health Monitoring. Journal of Microelectromechanical Systems 29, 5 (Oct. 2020), 755–761. https://doi.org/10.1109/jmems.2020.3007309
[7]
Adrian David Cheok, Roger Thomas Kok, Chuen Tan, Owen Noel Newton Fernando, Tim Merritt, and Janyn Yen Ping Sen. 2008. Empathetic living media. In Proceedings of the 7th ACM conference on Designing interactive systems - DIS '08. ACM Press. https://doi.org/10.1145/1394445.1394495
[8]
Lawrence C. Curtis. 1943. DELETERIOUS EFFECTS OF GUTTATED FLUIDS ON FOLIAGE. American Journal of Botany 30, 10 (Dec. 1943), 778–782. https://doi.org/10.1002/j.1537-2197.1943.tb10330.x
[9]
Lawrence C. Curtis. 1944. THE EXUDATION OF GLUTAMINE FROM LAWN GRASS. Plant Physiology 19, 1 (Jan. 1944), 1–5. https://doi.org/10.1104/pp.19.1.1
[10]
Donald Degraen, Hannah Hock, Marc Schubhan, Maximilian Altmeyer, Felix Kosmalla, and Antonio Krüger. 2021. FamilyFlower: an Artifical Flower to Foster Distant Family Connections. In 20th International Conference on Mobile and Ubiquitous Multimedia. ACM. https://doi.org/10.1145/3490632.3497833
[11]
Manfred Gareis and Eva-Maria Gareis. 2007. Guttation droplets of Penicillium nordicum and Penicillium verrucosum contain high concentrations of the mycotoxins ochratoxin A and B. Mycopathologia 163, 4 (April 2007), 207–214. https://doi.org/10.1007/s11046-007-9003-1
[12]
Verena K Hehle, Matthew J Paul, Pascal M Drake, Julian KC Ma, and Craig J van Dolleweerd. 2011. Antibody degradation in tobacco plants: a predominantly apoplastic process. BMC Biotechnology 11, 1 (Dec. 2011). https://doi.org/10.1186/1472-6750-11-128
[13]
S. S. Ivanoff. 1963. Guttation injuries of plants. The Botanical Review 29, 2 (April 1963), 202–229. https://doi.org/10.1007/bf02860821
[14]
Jiajun Jiang, Shuo Zhang, Bei Wang, Han Ding, and Zhigang Wu. 2020. Hydroprinted Liquid-Alloy-Based Morphing Electronics for Fast-Growing/Tender Plants: From Physiology Monitoring to Habit Manipulation. Small 16, 39 (Aug. 2020), 2003833. https://doi.org/10.1002/smll.202003833
[15]
D Karthiga and Savarimuthu Philip Anthony. 2013. Selective colorimetric sensing of toxic metal cations by green synthesized silver nanoparticles over a wide pH range. RSC Advances 3, 37 (2013), 16765–16774.
[16]
Sherjeel M. Khan, Sohail F. Shaikh, Nadeem Qaiser, and Muhammad Mustafa Hussain. 2018. Flexible Lightweight CMOS-Enabled Multisensory Platform for Plant Microclimate Monitoring. IEEE Transactions on Electron Devices 65, 11 (2018), 5038–5044. https://doi.org/10.1109/TED.2018.2872401
[17]
Way Inn Koay and Denise Dillon. 2020. Community gardening: Stress, well-being, and resilience potentials. International Journal of Environmental Research and Public Health 17, 18 (2020), 6740.
[18]
Hill Hiroki Kobayashi. 2015. Human–Computer–Biosphere Interaction: Toward a Sustainable Society. In More Playful User Interfaces. Springer Singapore, 97–119. https://doi.org/10.1007/978-981-287-546-4_5
[19]
Ahyeon Koh, Daeshik Kang, Yeguang Xue, Seungmin Lee, Rafal M. Pielak, Jeonghyun Kim, Taehwan Hwang, Seunghwan Min, Anthony Banks, Philippe Bastien, Megan C. Manco, Liang Wang, Kaitlyn R. Ammann, Kyung-In Jang, Phillip Won, Seungyong Han, Roozbeh Ghaffari, Ungyu Paik, Marvin J. Slepian, Guive Balooch, Yonggang Huang, and John A. Rogers. 2016. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Science Translational Medicine 8, 366 (Nov. 2016). https://doi.org/10.1126/scitranslmed.aaf2593
[20]
Slavko Komarnytsky, Nikolai V. Borisjuk, Ljudmila G. Borisjuk, Muhammad Z. Alam, and Ilya Raskin. 2000. Production of Recombinant Proteins in Tobacco Guttation Fluid. Plant Physiology 124, 3 (Nov. 2000), 927–934. https://doi.org/10.1104/pp.124.3.927
[21]
Satoshi Kuribayashi, Yusuke Sakamoto, and Hiroya Tanaka. 2007. I/O Plant: A Tool Kit for Designing Augmented Human-Plant Interactions. In CHI ’07 Extended Abstracts on Human Factors in Computing Systems (San Jose, CA, USA) (CHI EA ’07). Association for Computing Machinery, New York, NY, USA, 2537–2542. https://doi.org/10.1145/1240866.1241037
[22]
Seon-Yeong Kwak, Juan Pablo Giraldo, Min Hao Wong, Volodymyr B. Koman, Tedrick Thomas Salim Lew, Jon Ell, Mark C. Weidman, Rosalie M. Sinclair, Markita P. Landry, William A. Tisdale, and Michael S. Strano. 2017. A Nanobionic Light-Emitting Plant. Nano Letters 17, 12 (Dec. 2017), 7951–7961. https://doi.org/10.1021/acs.nanolett.7b04369
[23]
Kyeongha Kwon, Jong Uk Kim, Yujun Deng, Siddharth R. Krishnan, Jungil Choi, Hokyung Jang, KunHyuck Lee, Chun-Ju Su, Injae Yoo, Yixin Wu, Lindsay Lipschultz, Jae-Hwan Kim, Ted S. Chung, Derek Wu, Yoonseok Park, Tae il Kim, Roozbeh Ghaffari, Stephen Lee, Yonggang Huang, and John A. Rogers. 2021. An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time. Nature Electronics 4, 4 (March 2021), 302–312. https://doi.org/10.1038/s41928-021-00556-2
[24]
Giwon Lee, Qingshan Wei, and Yong Zhu. 2021. Emerging Wearable Sensors for Plant Health Monitoring. Advanced Functional Materials 31, 52 (Oct. 2021), 2106475. https://doi.org/10.1002/adfm.202106475
[25]
Zheng Li, Yuxuan Liu, Oindrila Hossain, Rajesh Paul, Shanshan Yao, Shuang Wu, Jean B. Ristaino, Yong Zhu, and Qingshan Wei. 2021. Real-time monitoring of plant stresses via chemiresistive profiling of leaf volatiles by a wearable sensor. Matter 4, 7 (July 2021), 2553–2570. https://doi.org/10.1016/j.matt.2021.06.009
[26]
Qiuyu Lu, Yejun Liu, and Haipeng Mi. 2020. MotionFlow: Time-axis-based Multiple Robots Expressive Motion Programming. In Proceedings of the 3rd International Conference on Computer Science and Software Engineering (Beijing, China) (CSSE ’20). Association for Computing Machinery, New York, NY, USA, 145–149. https://doi.org/10.1145/3403746.3403919
[27]
Qiuyu Lu, Chengpeng Mao, Liyuan Wang, and Haipeng Mi. 2016. LIME: LIquid MEtal Interfaces for Non-Rigid Interaction. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (Tokyo, Japan) (UIST ’16). Association for Computing Machinery, New York, NY, USA, 449–452. https://doi.org/10.1145/2984511.2984562
[28]
Qiuyu Lu, Jifei Ou, João Wilbert, André Haben, Haipeng Mi, and Hiroshi Ishii. 2019. MilliMorph – Fluid-Driven Thin Film Shape-Change Materials for Interaction Design. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 663–672.
[29]
Qiuyu Lu, Danqing Shi, Yingqing Xu, and Haipeng Mi. 2020. MetaLife: Interactive Installation Based on Liquid Metal Deformable Interfaces. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI EA ’20). Association for Computing Machinery, New York, NY, USA, 1–4. https://doi.org/10.1145/3334480.3383134
[30]
Qiuyu Lu, Haiqing Xu, Yijie Guo, Joey Yu Wang, and Lining Yao. 2023. Fluidic Computation Kit: Towards Electronic-free Shape-changing Interfaces. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg, Germany) (CHI ’23). Association for Computing Machinery, New York, NY, USA, Article 211, 21 pages. https://doi.org/10.1145/3544548.3580783
[31]
Qiuyu Lu, Tianyu Yu, Semina Yi, Yuran Ding, Haipeng Mi, and Lining Yao. 2023. Sustainflatable: Harvesting, Storing and Utilizing Ambient Energy for Pneumatic Morphing Interfaces. In Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology (San Francisco, CA, USA) (UIST ’23). Association for Computing Machinery, New York, NY, USA, Article 32, 20 pages. https://doi.org/10.1145/3586183.3606721
[32]
Michael L. Magwa, William A. Lindner, and John M. Brand. 1993. Guttation fluid peroxidases from Helianthus annuus. Phytochemistry 32, 2 (Jan. 1993), 251–253. https://doi.org/10.1016/s0031-9422(00)94976-8
[33]
Joanna M. Nassar, Sherjeel M. Khan, Diego Rosas Villalva, Maha M. Nour, Amani S. Almuslem, and Muhammad M. Hussain. 2018. Compliant plant wearables for localized microclimate and plant growth monitoring. npj Flexible Electronics 2, 1 (10 Sep 2018), 24. https://doi.org/10.1038/s41528-018-0039-8
[34]
O. Pedersen. 1993. Long-Distance Water Transport in Aquatic Plants. Plant Physiology 103, 4 (Dec. 1993), 1369–1375. https://doi.org/10.1104/pp.103.4.1369
[35]
Necmi Pilanali. 2005. Investigation of Monthly Variation in Some Plant-Nutrient Contents of Guttation Fluid Samples Taken from Dieffenbachia Plants. Journal of Plant Nutrition 28, 8 (Aug. 2005), 1375–1382. https://doi.org/10.1081/pln-200067464
[36]
Ivan Poupyrev, Philipp Schoessler, Jonas Loh, and Munehiko Sato. 2012. Botanicus Interacticus. In ACM SIGGRAPH 2012 Emerging Technologies on - SIGGRAPH '12. ACM Press. https://doi.org/10.1145/2343456.2343460
[37]
James A Rye, Sarah J Selmer, Sara Pennington, Laura Vanhorn, Sarah Fox, and Sara Kane. 2012. Elementary school garden programs enhance science education for all learners. Teaching Exceptional Children 44, 6 (2012), 58–65.
[38]
Ben Salem, Adrian Cheok, and Adria Bassaganyes. 2008. BioMedia for Entertainment. In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 232–242. https://doi.org/10.1007/978-3-540-89222-9_31
[39]
Harpreet Sareen, Jiefu Zheng, and Pattie Maes. 2019. Cyborg Botany: Augmented Plants as Sensors, Displays and Actuators. In Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI EA ’19). Association for Computing Machinery, New York, NY, USA, 1–2. https://doi.org/10.1145/3290607.3311778
[40]
James Scott, Wendy A. Untereiner, Bess Wong, Neil A. Straus, and David Malloch. 2004. Genotypic variation in Penicillium chysogenum from indoor environments. Mycologia 96, 5 (Sept. 2004), 1095–1105. https://doi.org/10.1080/15572536.2005.11832908
[41]
Pallav Sengupta. 2013. Potential Health Impacts of Hard Water. International journal of preventive medicine 4 (08 2013), 866–875.
[42]
Jinsil Hwaryoung Seo, Annie Sungkajun, and Jinkyo Suh. 2015. Touchology. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems. ACM. https://doi.org/10.1145/2702613.2732883
[43]
Richard S. Cowles Sharon M. Douglas. [n. d.]. Plant Pest Handbook. The Connecticut Agricultural Experiment Station.
[44]
Hukum Singh. 2013. Guttation fluid as a physiological marker for selection of nitrogen efficient rice (Oryza sativa L.) genotypes. AFRICAN JOURNAL OF BIOTECHNOLOGY 12 (10 2013), 6276–6281.
[45]
Rajat Singh, Naveen Kumar, Rahul Mehra, Ankita Walia, Harish Kumar, Kajal Sharma, and Atul Thakur. 2022. Colorimetric assay for visual determination of imidacloprid in water and fruit samples using asparagine modified gold nanoparticles. Journal of the Iranian Chemical Society 19, 2 (2022), 599–607.
[46]
Sanjay Singh. 2016. Guttation: Mechanism, Momentum and Modulation. The Botanical Review 82, 2 (01 Jun 2016), 149–182. https://doi.org/10.1007/s12229-016-9165-y
[47]
Sanjay Singh. 2020. Guttation. Cambridge University Press, Cambridge, England.
[48]
Sanjay Singh and TN Singh. 2013. Guttation 1: chemistry, crop husbandry and molecular farming. Phytochemistry Reviews 12 (2013), 147–172.
[49]
Thomas L. Slewinski, Robert Meeley, and David M. Braun. 2009. Sucrose transporter1 functions in phloem loading in maize leaves. Journal of Experimental Botany 60, 3 (Jan. 2009), 881–892. https://doi.org/10.1093/jxb/ern335
[50]
Eleni Stavrinidou, Roger Gabrielsson, Eliot Gomez, Xavier Crispin, Ove Nilsson, Daniel T. Simon, and Magnus Berggren. 2015. Electronic plants. Science Advances 1, 10 (Nov. 2015). https://doi.org/10.1126/sciadv.1501136
[51]
Anne Stokes. 1954. Uptake and translocation of griseofulvin by wheat seedlings. Plant and Soil 5, 2 (Feb. 1954), 132–142. https://doi.org/10.1007/bf01343846
[52]
Wenzhi Tang, Tingting Yan, Fei Wang, Jingxian Yang, Jian Wu, Jianlong Wang, Tianli Yue, and Zhonghong Li. 2019. Rapid fabrication of wearable carbon nanotube/graphite strain sensor for real-time monitoring of plant growth. Carbon 147 (June 2019), 295–302. https://doi.org/10.1016/j.carbon.2019.03.002
[53]
Andrea Tapparo, Chiara Giorio, Matteo Marzaro, Daniele Marton, Lidia Soldà, and Vincenzo Girolami. 2011. Rapid analysis of neonicotinoid insecticides in guttation drops of corn seedlings obtained from coated seeds. Journal of Environmental Monitoring 13, 6 (2011), 1564. https://doi.org/10.1039/c1em10085h
[54]
Po-Jen Tseng, Chiung-Yi Wang, Tzu-Yun Huang, Yuan-Yu Chuang, Shih-Feng Fu, and Yang-Wei Lin. 2014. A facile colorimetric assay for determination of salicylic acid in tobacco leaves using titanium dioxide nanoparticles. Analytical Methods 6, 6 (2014), 1759–1765.
[55]
Pablo Urbaneja-Bernat, Alejandro Tena, Joel González-Cabrera, and Cesar Rodriguez-Saona. 2020. Plant guttation provides nutrient-rich food for insects. Proceedings of the Royal Society B: Biological Sciences 287, 1935 (Sept. 2020), 20201080. https://doi.org/10.1098/rspb.2020.1080
[56]
Leonie Verhage. 2021. Pump it up! How xylem sap pH controls water transport in leaves. The Plant Journal 106, 2 (April 2021), 299–300. https://doi.org/10.1111/tpj.15265
[57]
Susanne von Caemmerer and Neil Baker. 2007. The Biology of Transpiration. From Guard Cells to Globe. Plant Physiology 143, 1 (01 2007), 3–3. https://doi.org/10.1104/pp.104.900213 arXiv:https://academic.oup.com/plphys/article-pdf/143/1/3/38099458/plphys_v143_1_3.pdf
[58]
G. J. WAGNER. 2004. New Approaches for Studying and Exploiting an Old Protuberance, the Plant Trichome. Annals of Botany 93, 1 (Jan. 2004), 3–11. https://doi.org/10.1093/aob/mch011
[59]
Mary Ward, Rena Jones, Jean Brender, Theo de Kok, Peter Weyer, Bernard Nolan, Cristina Villanueva, and Simone van Breda. 2018. Drinking Water Nitrate and Human Health: An Updated Review. International Journal of Environmental Research and Public Health 15, 7 (July 2018), 1557. https://doi.org/10.3390/ijerph15071557
[60]
George W. Ware. 1988. Nitrate and Nitrite. In Reviews of Environmental Contamination and Toxicology. Springer New York, 117–130. https://doi.org/10.1007/978-1-4684-7083-3_10
[61]
Di Wu, Emily Guan, Yunjia Zhang, Hsuanju Lai, Qiuyu Lu, and Lining Yao. 2024. Waxpaper Actuator: Sequentially and Conditionally Programmable Wax Paper for Morphing Interfaces. In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’24). Association for Computing Machinery, New York, NY, USA, 16 pages. https://doi.org/10.1145/3613904.3642373
[62]
S. A. Young, A. Guo, J. A. Guikema, F. F. White, and J. E. Leach. 1995. Rice Cationic Peroxidase Accumulates in Xylem Vessels during Incompatible Interactions with Xanthomonas oryzae pv oryzae. Plant Physiology 107, 4 (April 1995), 1333–1341. https://doi.org/10.1104/pp.107.4.1333
[63]
Tianyu Yu, Mengjia Niu, Haipeng Mi, and Qiuyu Lu. 2024. MilliWare: Parametric Modeling and Simulation of Millifluidic Shape-changing Interface. In Proceedings of the Eleventh International Symposium of Chinese CHI (Denpasar, Bali, Indonesia) (CHCHI ’23). Association for Computing Machinery, New York, NY, USA, 461–467. https://doi.org/10.1145/3629606.3629654
[64]
Yi Zhang, Hexia Guo, Sung Bong Kim, Yixin Wu, Diana Ostojich, Sook Hyeon Park, Xueju Wang, Zhengyan Weng, Rui Li, Amay J. Bandodkar, Yurina Sekine, Jungil Choi, Shuai Xu, Susan Quaggin, Roozbeh Ghaffari, and John A. Rogers. 2019. Passive sweat collection and colorimetric analysis of biomarkers relevant to kidney disorders using a soft microfluidic system. Lab on a Chip 19, 9 (2019), 1545–1555. https://doi.org/10.1039/c9lc00103d

Cited By

View all
  • (2024)Flexible Wearable Antenna for IoT-Based Plant Health MonitoringElectronics10.3390/electronics1315295613:15(2956)Online publication date: 26-Jul-2024
  • (2024)Design and Simulation Tool for Sequentially and Conditionally Programmable Waxpaper Morphing InterfacesExtended Abstracts of the CHI Conference on Human Factors in Computing Systems10.1145/3613905.3648661(1-5)Online publication date: 11-May-2024

Index Terms

  1. Guttation Sensor: Wearable Microfluidic Chip for Plant Condition Monitoring and Diagnosis

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      CHI EA '24: Extended Abstracts of the CHI Conference on Human Factors in Computing Systems
      May 2024
      4761 pages
      ISBN:9798400703317
      DOI:10.1145/3613905
      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 11 May 2024

      Check for updates

      Author Tags

      1. guttation
      2. low-cost
      3. plant
      4. sensor

      Qualifiers

      • Work in progress
      • Research
      • Refereed limited

      Funding Sources

      Conference

      CHI '24

      Acceptance Rates

      Overall Acceptance Rate 6,164 of 23,696 submissions, 26%

      Upcoming Conference

      CHI 2025
      ACM CHI Conference on Human Factors in Computing Systems
      April 26 - May 1, 2025
      Yokohama , Japan

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)404
      • Downloads (Last 6 weeks)53
      Reflects downloads up to 14 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Flexible Wearable Antenna for IoT-Based Plant Health MonitoringElectronics10.3390/electronics1315295613:15(2956)Online publication date: 26-Jul-2024
      • (2024)Design and Simulation Tool for Sequentially and Conditionally Programmable Waxpaper Morphing InterfacesExtended Abstracts of the CHI Conference on Human Factors in Computing Systems10.1145/3613905.3648661(1-5)Online publication date: 11-May-2024

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Full Text

      View this article in Full Text.

      Full Text

      HTML Format

      View this article in HTML Format.

      HTML Format

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media