Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

DiVA: A Scalable, Interactive and Customizable Visual Analytics Platform for Information Diffusion on Large Networks

Published: 24 February 2023 Publication History

Abstract

With an increasing outreach of digital platforms in our lives, researchers have taken a keen interest in studying different facets of social interactions. Analyzing the spread of information (aka diffusion) has brought forth multiple research areas such as modelling user engagement, determining emerging topics, forecasting the virality of online posts and predicting information cascades. Despite such ever-increasing interest, there remains a vacuum among easy-to-use interfaces for large-scale visualization of diffusion models. In this article, we introduce DiVADiffusion Visualization and Analysis, a tool that provides a scalable web interface and extendable APIs to analyze various diffusion trends on networks. DiVA uniquely offers support for simultaneous comparison of two competing diffusion models and even the comparison with the ground-truth results, which help develop a coherent understanding of real-world scenarios. Along with performing an exhaustive feature comparison and system evaluation of DiVA against publicly-available web interfaces for information diffusion, we conducted a user study to understand the strengths and limitations of DiVA. We noticed that evaluators had a seamless user experience, especially when analyzing diffusion on large networks.

References

[1]
Niels Becker. 1979. The uses of epidemic models. Biometrics 35, 1 (1979), 295–305.
[2]
Z. Zhang, H. Wang, C. Wang, and H. Fang. 2015. Modeling epidemics spreading on social contact networks. IEEE Transactions on Emerging Topics in Computing 3, 3 (2015), 410–419. DOI:
[3]
E. Aghasian, S. Garg, L. Gao, S. Yu, and J. Montgomery. 2017. Scoring users’ privacy disclosure across multiple online social networks. IEEE Access 5 (2017), 13118–13130. DOI:
[4]
Mohammed Ali Al-Garadi, Kasturi Dewi Varathan, Sri Devi Ravana, Ejaz Ahmed, Ghulam Mujtaba, Muhammad Usman Shahid Khan, and Samee U. Khan. 2018. Analysis of online social network connections for identification of influential users: Survey and open research issues. ACM Computing Surveys 51, 1, Article 16 (Jan.2018), 37 pages.
[5]
Guodao Sun, Tan Tang, Tai-Quan Peng, Ronghua Liang, and Yingcai Wu. 2017. SocialWave: Visual analysis of spatio-temporal diffusion of information on social media. 9, 2, Article 15 (Oct.2017), 23 pages. DOI:
[6]
Y. Wu, S. Liu, K. Yan, M. Liu, and F. Wu. 2014. OpinionFlow: Visual analysis of opinion diffusion on social media. IEEE Transactions on Visualization and Computer Graphics 20, 12 (2014), 1763–1772. DOI:
[7]
Jayati Deshmukh, Raksha Pavagada Subbanarasimha, Pooja Bassin, Venkat Suprabath Bitra, Srinath Srinivasa, and Anupama Sharma. 2021. An interactive simulator for COVID-19 trend analysis. In Proceedings of the CODS COMAD. 385–389.
[8]
Zhenhe Pan, Dhruv Mehta, Anubhav Tiwari, Siddhartha Ireddy, Zhou Yang, and Fang Jin. 2020. An interactive platform to track global COVID-19 epidemic. In Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2020, Martin Atzmüller, Michele Coscia, and Rokia Missaoui (Eds.). IEEE, 948–951. DOI:
[9]
Zhou Yang, Jiwei Xu, Zhenhe Pan, and Fang Jin. 2020. COVID19 tracking: An interactive tracking, visualizing and analyzing platform. In Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2020, Martin Atzmüller, Michele Coscia, and Rokia Missaoui (Eds.). IEEE, 941–943. DOI:
[10]
Matheus Araujo, Yelena Mejova, Michaël Aupetit, and Ingmar Weber. 2018. Visualizing geo-demographic urban data(CSCW’18). Association for Computing Machinery, New York, NY, 45–48. DOI:
[11]
Jeffrey Heer and Danah Boyd. 2005. Vizster: Visualizing online social networks. In Proceedings of the INFOVIS. IEEE, 32–39.
[12]
Yun Chi, Shenghuo Zhu, Koji Hino, Yihong Gong, and Yi Zhang. 2009. iOLAP: A framework for analyzing the internet, social networks, and other networked data. IEEE Transactions on Multimedia 11, 3 (2009), 372–382.
[13]
Derek Hansen, Ben Shneiderman, and Marc A. Smith. 2010. Analyzing Social Media Networks with NodeXL: Insights from a Connected World. Morgan Kaufmann.
[14]
Danny Holten. 2006. Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Transactions on Visualization and Computer Graphics 12, 5 (2006), 741–748.
[15]
Chen-Chi Hu, Hao-Xiang Wei, and Ming-Te Chi. 2019. Shareflow: A visualization tool for information diffusion in social media. In Proceedings of the International Conference on Ubiquitous Information Management and Communication. Springer, 563–581.
[16]
Weiwei Cui, Hong Zhou, Huamin Qu, Pak Chung Wong, and Xiaoming Li. 2008. Geometry-based edge clustering for graph visualization. IEEE Transactions on Visualization and Computer Graphics 14, 6 (2008), 1277–1284.
[17]
P. Li, H. Dau, G. Puleo, and O. Milenkovic. 2017. Motif clustering and overlapping clustering for social network analysis. In Proceedings of the IEEE INFOCOM 2017-IEEE Conference on Computer Communications. 1–9.
[18]
Ben Shneiderman and Aleks Aris. 2006. Network visualization by semantic substrates. IEEE Transactions on Visualization and Computer Graphics 12, 5 (2006), 733–740.
[19]
Adam Perer, Ido Guy, Erel Uziel, Inbal Ronen, and Michal Jacovi. 2011. Visual social network analytics for relationship discovery in the enterprise. In Proceedings of the 2011 IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE, 71–79.
[20]
Radu-Andrei Negoescu and Daniel Gatica-Perez. 2010. Modeling flickr communities through probabilistic topic-based analysis. IEEE Transactions on Multimedia 12, 5 (2010), 399–416.
[21]
L. Anthony. 2018. Introducing fireant: A freeware, multiplatform social media data-analysis tool. IEEE Transactions on Professional Communication 61, 4 (2018), 428–442.
[22]
Cheng Long and Raymond Chi-Wing Wong. 2014. Visual-VM: A social network visualization tool for viral marketing. In International Conference on Data Mining Workshop. IEEE, 1223–1226.
[23]
M. Kejriwal and P. Zhou. 2019. SAVIZ: Interactive exploration and visualization of situation labeling classifiers over crisis social media data. In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. 705–708.
[24]
Flávio C. Coelho, Oswaldo G. Cruz, and Cláudia T. Codeço. 2008. Epigrass: A tool to study disease spread in complex networks. Source Code for Biology and Medicine 3, 1 (2008), 1–9.
[25]
Fernanda Viégas, Martin Wattenberg, Jack Hebert, Geoffrey Borggaard, Alison Cichowlas, Jonathan Feinberg, Jon Orwant, and Christopher Wren. 2013. Google+ ripples: A native visualization of information flow. In Proceedings of the 22nd International World Wide Web Conference. 1389–1398.
[26]
Panpan Xu, Yingcai Wu, Enxun Wei, Tai-Quan Peng, Shixia Liu, Jonathan JH Zhu, and Huamin Qu. 2013. Visual analysis of topic competition on social media. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2012–2021.
[27]
Fernanda B. Viégas, Martin Wattenberg, and Kushal Dave. 2004. Studying cooperation and conflict between authors with history flow visualizations. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 575–582.
[28]
Nan Cao, Yu-Ru Lin, Xiaohua Sun, David Lazer, Shixia Liu, and Huamin Qu. 2012. Whisper: Tracing the spatiotemporal process of information diffusion in real time. IEEE Transactions on Visualization and Computer Graphics 18, 12 (2012), 2649–2658.
[29]
Yang Yi-Hsuan and Liu Jen-Yu. 2012. Quantitative study of music listening behavior in a social and affective context. IEEE Transactions on Multimedia 15, 6 (2013), 1304–1315.
[30]
Yi-Hsuan Yang and Jen-Yu Liu. 2013. Quantitative study of music listening behavior in a social and affective context. IEEE Transactions on Multimedia 15, 6 (2013), 1304–1315.
[31]
Guolin Niu, Xiaoguang Fan, Victor OK Li, Yi Long, and Kuang Xu. 2014. Multi-source-driven asynchronous diffusion model for video-sharing in online social networks. IEEE Transactions on Multimedia 16, 7 (2014), 2025–2037.
[32]
S. Chen, S. Chen, Z. Wang, J. Liang, X. Yuan, N. Cao, and Y. Wu. 2016. D-Map: Visual analysis of ego-centric information diffusion patterns in social media. In Proceedings of the 2016 IEEE Conference on Visual Analytics Science and Technology (VAST). 41–50.
[33]
Bjarte Botnevik, Eirik Sakariassen, and Vinay Setty. 2020. BRENDA: Browser extension for fake news detection. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’20). Association for Computing Machinery, New York, NY, 2117–2120. DOI:
[34]
Ruchi Ookalkar, Kolli Vishal Reddy, and Eric Gilbert. 2019. Pop: Bursting news filter bubbles on Twitter through diverse exposure. InConference Companion Publication of the 2019 on Computer Supported Cooperative Work and Social Computing (CSCW’19). Association for Computing Machinery, New York, NY, USA, 18–22. DOI:
[35]
Saebom Kwon, Puhe Liang, Sonali Tandon, Jacob Berman, Pai-ju Chang, and Eric Gilbert. 2018. Tweety holmes: A browser extension for abusive Twitter profile detection. In Proceedings of the Companion of the 2018 ACM Conference on Computer Supported Cooperative Work and Social Computing (CSCW’18). Association for Computing Machinery, New York, NY, 17–20. DOI:
[36]
Md Momen Bhuiyan, Kexin Zhang, Kelsey Vick, Michael A. Horning, and Tanushree Mitra. 2018. FeedReflect: A tool for nudging users to assess news credibility on Twitter. In Proceedings of the Companion of the 2018 ACM Conference on Computer Supported Cooperative Work and Social Computing (CSCW’18). 205–208.
[37]
S. Malik, Alison Smith, T. Hawes, Panagis Papadatos, Jianyu Li, C. Dunne, and B. Shneiderman. 2013. TopicFlow: Visualizing topic alignment of Twitter data over time. In Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM’13) (2013), 720–726.
[38]
Bas Sijtsma, Pernilla Qvarfordt, and Francine Chen. 2016. Tweetviz: Visualizing tweets for business intelligence. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’16). Association for Computing Machinery, New York, NY, 1153–1156. DOI:
[39]
Giulio Rossetti, Letizia Milli, Salvatore Rinzivillo, Alina Sîrbu, Dino Pedreschi, and Fosca Giannotti. 2018. NDlib: A python library to model and analyze diffusion processes over complex networks. International Journal of Data Science and Analytics 5, 1 (2018), 61–79.
[40]
Samuel M. Jenness, Steven M. Goodreau, and Martina Morris. 2018. EpiModel: An R package for mathematical modeling of infectious disease over networks. Journal of Statistical Software 84 (2018).
[41]
Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. 2009. Gephi: An open source software for exploring and manipulating networks. In Proceedings of the International AAAI Conference on Web and Social Media 3, 1 (2009), 361–362. https://ojs.aaai.org/index.php/ICWSM/article/view/13937.
[42]
Aric Hagberg, Pieter Swart, and Daniel S. Chult. 2008. Exploring Network Structure, Dynamics, and Function using NetworkX. Technical Report. Los Alamos National Lab. (LANL), Los Alamos, NM.
[43]
David Otasek, John H. Morris, Jorge Bouças, Alexander R. Pico, and Barry Demchak. 2019. Cytoscape automation: Empowering workflow-based network analysis. Genome Biology 20, 1 (Sept.2019), 1–15. DOI:
[44]
Siming Chen, Shuai Chen, Zhenhuang Wang, Jie Liang, Yadong Wu, and Xiaoru Yuan. 2018. D-Map+: Interactive visual analysis and exploration of ego-centric and event-centric information diffusion patterns in social media. ACM Transactions on Intelligent Systems and Technology 10, 1, Article 11 (Nov.2018), 26 pages. DOI:
[45]
Siming Chen, Shuai Chen, Lijing Lin, Xiaoru Yuan, Jie Liang, and Xiaolong Zhang. 2017. E-Map: A visual analytics approach for exploring significant event evolutions in social media. In Proceedings of the 2017 IEEE Conference on Visual Analytics Science and Technology (VAST). 36–47.
[46]
Yi Chen, Yu Dong, Yuehong Sun, and Jie Liang. 2018. A multi-comparable visual analytic approach for complex hierarchical data. Journal of Visual Languages & Computing 47 (2018), 19–30. DOI:
[47]
Hongyu Jiang, Kai Tang, Weixin Zhao, Wenqi Pei, Yadong Wu, and Jie Liang. 2018. Aureole: A multi-perspective visual analytics approach for green cellular networks. Journal of Visualization 21, 3 (Jun.2018), 485–494. DOI:
[48]
Vladimir Batagelj and Andrej Mrvar. 2004. Pajek–analysis and visualization of large networks. In Proceedings of the Graph Drawing Software. Springer, 77–103.
[49]
James Abello, Frank Van Ham, and Neeraj Krishnan. 2006. Ask-graphview: A large scale graph visualization system. IEEE Transactions on Visualization and Computer Graphics 12, 5 (2006), 669–676.
[50]
Skye Bender-deMoll and Daniel A. McFarland. 2006. The art and science of dynamic network visualization. Journal of Social Structure 7, 2 (2006), 1–38.
[51]
Claudio D. G. Linhares, Bruno A. N. Travençolo, Jose Gustavo S. Paiva, and Luis E. C. Rocha. 2017. DyNetVis: A system for visualization of dynamic networks. In Proceedings of the Symposium on Applied Computing (SAC’17). Association for Computing Machinery, New York, NY, 187–194. DOI:
[52]
Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. 2016. Visualizing large-scale and high-dimensional data. In Proceedings of the 25th International Conference on World Wide Web. 287–297.
[53]
Kazumi Saito, Masahiro Kimura, and Hiroshi Motoda. 2008. Effective visualization of information diffusion process over complex networks. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 326–341.
[54]
Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal of Machine Learning Research 9, Nov (2008), 2579–2605.
[55]
Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008, 10 (Oct.2008), P10008. DOI:
[56]
Yu Dong, Alex Fauth, Maolin Huang, Yi Chen, and Jie Liang. 2020. PansyTree: Merging multiple hierarchies. In Proceedings of the 2020 IEEE Pacific Visualization Symposium (PacificVis). 131–135. DOI:
[57]
Siming Chen, Xiaoru Yuan, Zhenhuang Wang, Cong Guo, Jie Liang, Zuchao Wang, Xiaolong Zhang, and Jiawan Zhang. 2016. Interactive visual discovering of movement patterns from sparsely sampled geo-tagged social media data. IEEE Transactions on Visualization and Computer Graphics 22, 1 (2016), 270–279. DOI:
[58]
Wouter Van den Broeck, Corrado Gioannini, Bruno Gonçalves, Marco Quaggiotto, Vittoria Colizza, and Alessandro Vespignani. 2011. The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale. BMC Infectious Diseases 11, 1 (2011), 1–14.
[59]
Martin Graham and Jessie Kennedy. 2010. A survey of multiple tree visualisation. Information Visualization 9, 4 (2010), 235–252. DOI:arXiv:https://doi.org/10.1057/ivs.2009.29
[60]
Petra Neumann, Stefan Schlechtweg, and Sheelagh Carpendale. 2005. ArcTrees: Visualizing relations in hierarchical data. In Proceedings of the 7th Joint Eurographics/IEEE VGTC Conference on Visualization (EUROVIS’05). Eurographics Association, Goslar, DEU, 53–60.
[61]
Guozheng Li, Yu Zhang, Yu Dong, Jie Liang, Jinson Zhang, Jinsong Wang, Michael J. Mcguffin, and Xiaoru Yuan. 2020. BarcodeTree: Scalable comparison of multiple hierarchies. IEEE Transactions on Visualization and Computer Graphics 26, 1 (2020), 1022–1032. DOI:
[62]
Min Lu, Chufan Lai, Tangzhi Ye, Jie Liang, and Xiaoru Yuan. 2017. Visual analysis of multiple route choices based on general GPS trajectories. IEEE Transactions on Big Data 3, 2 (2017), 234–247. DOI:
[63]
Benjamin D. Lee, Michael A Timony, and Pablo Ruiz. 2019. DNAvisualization.org: A serverless web tool for DNA sequence visualization. Nucleic Acids Research 47, W1 (62019), W20–W25.
[64]
Nameeta Shah, Michael V. Teplitsky, Simon Minovitsky, Len A. Pennacchio, Philip Hugenholtz, Bernd Hamann, and Inna L. Dubchak. 2005. SNP-VISTA: An interactive SNP visualization tool. BMC Bioinformatics 6, 1 (Dec.2005). DOI:
[65]
Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. 2016. Visualizing large-scale and high-dimensional data. In Proceedings of the 25th International Conference on World Wide Web (WWW’16). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, 287–297. DOI:
[66]
Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer Özsu. 2017. The ubiquity of large graphs and surprising challenges of graph processing. Proceedings of the VLDB Endowment 11, 4 (Dec.2017), 420–431. DOI:
[67]
Oh-Hyun Kwon, Tarik Crnovrsanin, and Kwan-Liu Ma. 2018. What would a graph look like in this layout? A machine learning approach to large graph visualization. IEEE Transactions on Visualization and Computer Graphics 24, 1 (Jan.2018), 478–488. DOI:
[68]
Tiago P. Peixoto. 2014. The graph-tool python library. Figshare (2014). DOI:
[69]
Gabor Csardi and Tamas Nepusz. 2006. The igraph software package for complex network research. Internationa Journal Complex Systems 1695, 5 (2006), 1–9. Retrieved from https://igraph.org.
[70]
Mathieu Jacomy, Tommaso Venturini, Sebastien Heymann, and Mathieu Bastian. 2014. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the gephi software. PLOS ONE 9, 6 (62014), 1–12. DOI:
[71]
John Brooke. 1996. SUS—a Quick and Dirty Usability Scale. 189–194.
[72]
Rebecca A. Grier, Aaron Bangor, Philip Kortum, and S. Camille Peres. 2013. The system usability scale: Beyond standard usability testing. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 57, 1 (2013), 187–191. DOI:
[73]
Benedek Rozemberczki and Rik Sarkar. 2020. Characteristic functions on graphs: Birds of a feather, from statistical descriptors to parametric models. Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Association for Computing Machinery, New York, NY. 1325–1334.
[74]
M. Li, Xiang Wang, Kai Gao, and Shanshan Zhang. 2017. A survey on information diffusion in online social networks: Models and methods. Information 8, 4 (2017), 118.
[75]
T. Britton. 2010. Stochastic epidemic models: A survey.Mathematical Biosciences 225, 1 (2010), 24–35.

Cited By

View all
  • (2024)Integrating Social Explanations Into Explainable Artificial Intelligence (XAI) for Combating Misinformation: Vision and ChallengesIEEE Transactions on Computational Social Systems10.1109/TCSS.2024.340423611:5(6705-6726)Online publication date: Oct-2024
  • (2023)VASA: an exploratory visualization tool for mapping spatio-temporal structure of mobility – a COVID-19 case studyCartography and Geographic Information Science10.1080/15230406.2022.2156388(1-22)Online publication date: 21-Feb-2023

Index Terms

  1. DiVA: A Scalable, Interactive and Customizable Visual Analytics Platform for Information Diffusion on Large Networks

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Knowledge Discovery from Data
      ACM Transactions on Knowledge Discovery from Data  Volume 17, Issue 4
      May 2023
      364 pages
      ISSN:1556-4681
      EISSN:1556-472X
      DOI:10.1145/3583065
      Issue’s Table of Contents

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 24 February 2023
      Online AM: 24 August 2022
      Accepted: 06 August 2022
      Revised: 02 August 2022
      Received: 10 December 2021
      Published in TKDD Volume 17, Issue 4

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Information diffusion
      2. diffusion visualization
      3. diffusion analytics

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)171
      • Downloads (Last 6 weeks)12
      Reflects downloads up to 12 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Integrating Social Explanations Into Explainable Artificial Intelligence (XAI) for Combating Misinformation: Vision and ChallengesIEEE Transactions on Computational Social Systems10.1109/TCSS.2024.340423611:5(6705-6726)Online publication date: Oct-2024
      • (2023)VASA: an exploratory visualization tool for mapping spatio-temporal structure of mobility – a COVID-19 case studyCartography and Geographic Information Science10.1080/15230406.2022.2156388(1-22)Online publication date: 21-Feb-2023

      View Options

      Get Access

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Full Text

      View this article in Full Text.

      Full Text

      HTML Format

      View this article in HTML Format.

      HTML Format

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media