Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3452296.3472902acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Public Access

Network planning with deep reinforcement learning

Published: 09 August 2021 Publication History

Abstract

Network planning is critical to the performance, reliability and cost of web services. This problem is typically formulated as an Integer Linear Programming (ILP) problem. Today's practice relies on hand-tuned heuristics from human experts to address the scalability challenge of ILP solvers.
In this paper, we propose NeuroPlan, a deep reinforcement learning (RL) approach to solve the network planning problem. This problem involves multi-step decision making and cost minimization, which can be naturally cast as a deep RL problem. We develop two important domain-specific techniques. First, we use a graph neural network (GNN) and a novel domain-specific node-link transformation for state encoding, in order to handle the dynamic nature of the evolving network topology during planning decision making. Second, we leverage a two-stage hybrid approach that first uses deep RL to prune the search space and then uses an ILP solver to find the optimal solution. This approach resembles today's practice, but avoids human experts with an RL agent in the first stage. Evaluation on real topologies and setups from large production networks demonstrates that NeuroPlan scales to large topologies beyond the capability of ILP solvers, and reduces the cost by up to 17% compared to hand-tuned heuristics.

Supplementary Material

mahajan-public-review (162-public-review.pdf)
Network Planning with Deep Reinforcement Learning: Public Review
MP4 File (video-presentation.mp4)
Conference Presentation Video
MP4 File (video-long.mp4)
Long Version Video

References

[1]
AlphaFold. https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology.
[2]
Global state of the WAN Report, 2020. https://info.aryaka.com/state-of-the-wan-report-2020.html.
[3]
D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau, A. Courville, and Y. Bengio. An actor-critic algorithm for sequence prediction. arXiv preprint arXiv:1607.07086, 2016.
[4]
I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neural combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.
[5]
Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial optimization: a methodological tour d'horizon. European Journal of Operational Research, 2020.
[6]
J. A. Bondy, U. S. R. Murty, et al. Graph theory with applications. Macmillan London, 1976.
[7]
Q. Cappart, T. Moisan, L.-M. Rousseau, I. Prémont-Schwarz, and A. Cire. Combining reinforcement learning and constraint programming for combinatorial optimization. arXiv preprint arXiv:2006.01610, 2020.
[8]
Y. Chang, S. Rao, and M. Tawarmalani. Robust validation of network designs under uncertain demands and failures. In USENIX NSDI, 2017.
[9]
L. Chen, J. Lingys, K. Chen, and F. Liu. Auto: Scaling deep reinforcement learning for datacenter-scale automatic traffic optimization. In ACM SIGCOMM, 2018.
[10]
X. Chen and Y. Tian. Learning to perform local rewriting for combinatorial optimization. Advances in Neural Information Processing Systems, 2019.
[11]
CPLEX Optimizer. https://www.ibm.com/analytics/cplex-optimizer.
[12]
D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams. Convolutional networks on graphs for learning molecular fingerprints. arXiv preprint arXiv:1509.09292, 2015.
[13]
M. Fey and J. E. Lenssen. Fast graph representation learning with pytorch geometric. arXiv preprint arXiv:1903.02428, 2019.
[14]
B. Fortz and M. Thorup. Internet traffic engineering by optimizing OSPF weights. In IEEE INFOCOM, 2000.
[15]
O. Gerstel, C. Filsfils, T. Telkamp, M. Gunkel, M. Horneffer, V. Lopez, and A. Mayoral. Multi-layer capacity planning for ip-optical networks. IEEE Communications Magazine, 2014.
[16]
A. Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850, 2013.
[17]
L. Gu, D. Zeng, W. Li, S. Guo, A. Y. Zomaya, and H. Jin. Intelligent vnf orchestration and flow scheduling via model-assisted deep reinforcement learning. IEEE Journal on Selected Areas in Communications, 2019.
[18]
P. Gupta, M. Gasse, E. B. Khalil, M. P. Kumar, A. Lodi, and Y. Bengio. Hybrid models for learning to branch. arXiv preprint arXiv:2006.15212, 2020.
[19]
Gurobi solver. https://www.gurobi.com/.
[20]
R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils, T. Telkamp, and P. Francois. A declarative and expressive approach to control forwarding paths in carrier-grade networks. In ACM SIGCOMM, 2015.
[21]
P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep reinforcement learning that matters. In Proceedings of the AAAI Conference on Artificial Intelligence, 2018.
[22]
Q. Huang, A. Haj-Ali, W. Moses, J. Xiang, I. Stoica, K. Asanovic, and J. Wawrzynek. Autophase: Juggling hls phase orderings in random forests with deep reinforcement learning. arXiv preprint arXiv:2003.00671, 2020.
[23]
S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al. B4: Experience with a globally-deployed software defined wan. In ACM SIGCOMM, 2013.
[24]
N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar. A deep reinforcement learning perspective on internet congestion control. In International Conference on Machine Learning, 2019.
[25]
Z. Jia, M. Zaharia, and A. Aiken. Beyond data and model parallelism for deep neural networks. arXiv preprint arXiv:1807.05358, 2018.
[26]
J. M. Kahn and K.-P. Ho. Spectral efficiency limits and modulation/detection techniques for dwdm systems. IEEE Journal of Selected Topics in Quantum Electronics, 2004.
[27]
S. M. Kakade. A natural policy gradient. Advances in Neural Information Processing Systems, 2001.
[28]
E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization algorithms over graphs. Advances in Neural Information Processing Systems, 2017.
[29]
T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.
[30]
V. Kirilin, A. Sundarrajan, S. Gorinsky, and R. K. Sitaraman. Rl-cache: Learning-based cache admission for content delivery. IEEE Journal on Selected Areas in Communications, 2020.
[31]
V. R. Konda and J. N. Tsitsiklis. Actor-critic algorithms. In Advances in Neural Information Processing Systems, 2000.
[32]
W. Kool, H. Van Hoof, and M. Welling. Attention, learn to solve routing problems! arXiv preprint arXiv:1803.08475, 2018.
[33]
Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural networks. arXiv preprint arXiv:1511.05493, 2015.
[34]
E. Liang, H. Zhu, X. Jin, and I. Stoica. Neural packet classification. In ACM SIGCOMM. 2019.
[35]
C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang, and K. Murphy. Progressive neural architecture search. In Proceedings of the European Conference on Computer Vision (ECCV), 2018.
[36]
H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada, N. P. Lopes, A. Rybalchenko, G. Lu, and L. Yuan. CrystalNet: Faithfully emulating large production networks. In ACM SOSP, 2017.
[37]
Y. Liu, H. Zhang, W. Gongt, and D. Towsley. On the interaction between overlay routing and underlay routing. In IEEE INFOCOM, 2005.
[38]
H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive video streaming with pensieve. In ACM SIGCOMM, 2017.
[39]
H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Alizadeh. Learning scheduling algorithms for data processing clusters. In ACM SIGCOMM, 2019.
[40]
N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev. Reinforcement learning for combinatorial optimization: A survey. arXiv preprint arXiv:2003.03600, 2020.
[41]
Z. Meng, M. Wang, J. Bai, M. Xu, H. Mao, and H. Hu. Interpreting deep learning-based networking systems. In ACM SIGCOMM, 2020.
[42]
Mininet. http://mininet.org.
[43]
A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E. Songhori, S. Wang, Y.-J. Lee, E. Johnson, O. Pathak, S. Bae, et al. Chip placement with deep reinforcement learning. arXiv preprint arXiv:2004.10746, 2020.
[44]
J. E. Mitchell. Branch-and-cut algorithms for combinatorial optimization problems. Handbook of applied optimization, 2002.
[45]
A. Mittal, A. Dhawan, S. Manchanda, S. Medya, S. Ranu, and A. Singh. Learning heuristics over large graphs via deep reinforcement learning. arXiv preprint arXiv:1903.03332, 2019.
[46]
V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.
[47]
V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep reinforcement learning. Nature, 2015.
[48]
T. Nishizeki and N. Chiba. Planar graphs: Theory and algorithms. Elsevier, 1988.
[49]
NS-3 network simulator. https://www.nsnam.org/.
[50]
M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM review, 1991.
[51]
H. Peng, J. Li, Y. He, Y. Liu, M. Bao, L. Wang, Y. Song, and Q. Yang. Large-scale hierarchical text classification with recursively regularized deep graph-cnn. In WWW, 2018.
[52]
F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network model. IEEE Transactions on Neural Networks, 2008.
[53]
J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.
[54]
D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. v. d. Driessche, T. Graepel, and D. Hassabis. Mastering the game of go without human knowledge. Nature, 2017.
[55]
OpenAI Spinning Up. https://spinningup.openai.com/en/latest/.
[56]
J. Suárez-Varela, A. Mestres, J. Yu, L. Kuang, H. Feng, A. Cabellos-Aparicio, and P. Barlet-Ros. Routing in optical transport networks with deep reinforcement learning. IEEE/OSA Journal of Optical Communications and Networking, 2019.
[57]
H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos. Learning to optimize: Training deep neural networks for wireless resource management. In IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2017.
[58]
Y. Tang, S. Agrawal, and Y. Faenza. Reinforcement learning for integer programming: Learning to cut. In International Conference on Machine Learning, 2020.
[59]
Y. Tian, J. Ma, Q. Gong, S. Sengupta, Z. Chen, J. Pinkerton, and C. L. Zitnick. Elf opengo: An analysis and open reimplementation of alphazero. arXiv preprint arXiv:1902.04522, 2019.
[60]
M. Tornatore, G. Maier, and A. Pattavina. Wdm network design by ilp models based on flow aggregation. IEEE/ACM Transactions on Networking, 2007.
[61]
M. Trofin, Y. Qian, E. Brevdo, Z. Lin, K. Choromanski, and D. Li. Mlgo: a machine learning guided compiler optimizations framework. arXiv preprint arXiv:2101.04808, 2021.
[62]
A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar. Learning to route with deep rl. In NIPS Deep Reinforcement Learning Symposium, 2017.
[63]
K. G. Vamvoudakis and F. L. Lewis. Online actor--critic algorithm to solve the continuous-time infinite horizon optimal control problem. Automatica, 2010.
[64]
P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.
[65]
S. Verdú. Spectral efficiency in the wideband regime. IEEE Transactions on Information Theory, 2002.
[66]
S. Verdú and S. Shamai. Spectral efficiency of cdma with random spreading. IEEE Transactions on Information Theory, 1999.
[67]
J. Wang, D. Ding, H. Wang, C. Christensen, Z. Wang, H. Chen, and J. Li. Polyjuice: High-performance transactions via learned concurrency control. In USENIX OSDI, 2021.
[68]
P. J. Winzer. High-spectral-efficiency optical modulation formats. Journal of Lightwave Technology, 2012.
[69]
Y. Wu and Y. Tian. Training agent for first-person shooter game with actor-critic curriculum learning. In ICLR, 2016.
[70]
Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2020.
[71]
K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? arXiv preprint arXiv:1810.00826, 2018.
[72]
Z. Yang, B. Chandramouli, C. Wang, J. Gehrke, Y. Li, U. F. Minhas, P.-Å. Larson, D. Kossmann, and R. Acharya. Qd-tree: Learning data layouts for big data analytics. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, 2020.
[73]
J. Yao, R. Tao, R. Gu, J. Nieh, S. Jana, and G. Ryan. Distai: Data-driven automated invariant learning for distributed protocols. In USENIX OSDI, 2021.
[74]
J. You, B. Liu, Z. Ying, V. Pande, and J. Leskovec. Graph convolutional policy network for goal-directed molecular graph generation. In Advances in Neural Information Processing Systems, 2018.
[75]
D. Zeng, L. Gu, S. Pan, J. Cai, and S. Guo. Resource management at the network edge: A deep reinforcement learning approach. IEEE Network, 2019.
[76]
C. Zhang, P. Patras, and H. Haddadi. Deep learning in mobile and wireless networking: A survey. IEEE Communications surveys & tutorials, 2019.
[77]
C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla. Heterogeneous graph neural network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019.
[78]
J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun. Graph neural networks: A review of methods and applications. arXiv preprint arXiv:1812.08434, 2018.
[79]
D. Zhuo, M. Ghobadi, R. Mahajan, A. Phanishayee, X. K. Zou, H. Guan, A. Krishnamurthy, and T. Anderson. RAIL: A case for redundant arrays of inexpensive links in data center networks. In USENIX NSDI, 2017.
[80]
B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578, 2016.

Cited By

View all
  • (2025)Cooperative Graceful Degradation in Containerized CloudsProceedings of the 30th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 110.1145/3669940.3707244(214-232)Online publication date: 30-Mar-2025
  • (2025)Path-Based Graph Neural Network for Robust and Resilient Routing in Distributed Traffic EngineeringIEEE Journal on Selected Areas in Communications10.1109/JSAC.2025.352881543:2(422-436)Online publication date: Feb-2025
  • (2025)Network Digital Twin Toward Networking, Telecommunications, and Traffic Engineering: A SurveyIEEE Access10.1109/ACCESS.2025.353194713(16489-16538)Online publication date: 2025
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGCOMM '21: Proceedings of the 2021 ACM SIGCOMM 2021 Conference
August 2021
868 pages
ISBN:9781450383837
DOI:10.1145/3452296
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 09 August 2021

Permissions

Request permissions for this article.

Check for updates

Badges

Author Tags

  1. graph neural network
  2. network planning
  3. reinforcement learning

Qualifiers

  • Research-article

Funding Sources

Conference

SIGCOMM '21
Sponsor:
SIGCOMM '21: ACM SIGCOMM 2021 Conference
August 23 - 27, 2021
Virtual Event, USA

Acceptance Rates

Overall Acceptance Rate 462 of 3,389 submissions, 14%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1,224
  • Downloads (Last 6 weeks)139
Reflects downloads up to 22 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Cooperative Graceful Degradation in Containerized CloudsProceedings of the 30th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 110.1145/3669940.3707244(214-232)Online publication date: 30-Mar-2025
  • (2025)Path-Based Graph Neural Network for Robust and Resilient Routing in Distributed Traffic EngineeringIEEE Journal on Selected Areas in Communications10.1109/JSAC.2025.352881543:2(422-436)Online publication date: Feb-2025
  • (2025)Network Digital Twin Toward Networking, Telecommunications, and Traffic Engineering: A SurveyIEEE Access10.1109/ACCESS.2025.353194713(16489-16538)Online publication date: 2025
  • (2025)Is your solution accurate? A fault-oriented performance prediction method for enhancing communication network reliabilityReliability Engineering & System Safety10.1016/j.ress.2024.110793256(110793)Online publication date: Apr-2025
  • (2024)Learning-Based Optimisation for Integrated Problems in Intermodal Freight Transport: Preliminaries, Strategies, and State of the ArtApplied Sciences10.3390/app1419864214:19(8642)Online publication date: 25-Sep-2024
  • (2024)Sequence labeling via reinforcement learning with aggregate labelsFrontiers in Artificial Intelligence10.3389/frai.2024.14631647Online publication date: 15-Nov-2024
  • (2024)PRODIGY+: a robust progressive upgrade approach for elastic optical networksJournal of Optical Communications and Networking10.1364/JOCN.52539216:9(E48)Online publication date: 15-Aug-2024
  • (2024)OpticGAI: Generative AI-aided Deep Reinforcement Learning for Optical Networks OptimizationProceedings of the 1st SIGCOMM Workshop on Hot Topics in Optical Technologies and Applications in Networking10.1145/3672201.3674119(1-6)Online publication date: 4-Aug-2024
  • (2024)Joint Optimization of Task Offloading and Service Placement for Digital Twin empowered Mobile Edge ComputingProceedings of the 2024 3rd International Conference on Networks, Communications and Information Technology10.1145/3672121.3672145(132-137)Online publication date: 7-Jun-2024
  • (2024)Optimizing Irrigation Efficiency using Deep Reinforcement Learning in the FieldACM Transactions on Sensor Networks10.1145/366218220:4(1-34)Online publication date: 8-Jul-2024
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media