Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Fuzzy Logic in Surveillance Big Video Data Analysis: Comprehensive Review, Challenges, and Research Directions

Published: 21 May 2021 Publication History

Editorial Notes

The editors have requested minor, non-substantive changes to the VoR and, in accordance with ACM policies, a Corrected VoR was published on June 9, 2021. For reference purposes the VoR may still be accessed via the Supplemental Material section on this page.

Abstract

CCTV cameras installed for continuous surveillance generate enormous amounts of data daily, forging the term Big Video Data (BVD). The active practice of BVD includes intelligent surveillance and activity recognition, among other challenging tasks. To efficiently address these tasks, the computer vision research community has provided monitoring systems, activity recognition methods, and many other computationally complex solutions for the purposeful usage of BVD. Unfortunately, the limited capabilities of these methods, higher computational complexity, and stringent installation requirements hinder their practical implementation in real-world scenarios, which still demand human operators sitting in front of cameras to monitor activities or make actionable decisions based on BVD. The usage of human-like logic, known as fuzzy logic, has been employed emerging for various data science applications such as control systems, image processing, decision making, routing, and advanced safety-critical systems. This is due to its ability to handle various sources of real-world domain and data uncertainties, generating easily adaptable and explainable data-based models. Fuzzy logic can be effectively used for surveillance as a complementary for huge-sized artificial intelligence models and tiresome training procedures. In this article, we draw researchers’ attention toward the usage of fuzzy logic for surveillance in the context of BVD. We carry out a comprehensive literature survey of methods for vision sensory data analytics that resort to fuzzy logic concepts. Our overview highlights the advantages, downsides, and challenges in existing video analysis methods based on fuzzy logic for surveillance applications. We enumerate and discuss the datasets used by these methods, and finally provide an outlook toward future research directions derived from our critical assessment of the efforts invested so far in this exciting field.

Supplementary Material

3444693-vor (3444693-vor.pdf)
Version of Record for "Fuzzy Logic in Surveillance Big Video Data Analysis: Comprehensive Review, Challenges, and Research Directions" by Muhammad et al., ACM Computing Surveys Vol. 54, Issue 3 (CSUR 54:3).

References

[1]
Zhihan Lv, Houbing Song, Pablo Basanta-Val, Anthony Steed, and Minho Jo. 2017. Next-generation big data analytics: State of the art, challenges, and future research topics. IEEE Trans. Industr. Info. 13, 4 (2017), 1891--1899.
[2]
Waseem Ullah, Amin Ullah, Ijaz Ul Haq, Khan Muhammad, Muhammad Sajjad, and Sung Wook Baik. 2020. CNN features with bi-directional LSTM for real-time anomaly detection in surveillance networks. Multimedia Tools Appl. (2020), 1–17. https://doi.org/10.1007/s11042-020-09406-3
[3]
Fath U. Min Ullah, Amin Ullah, Khan Muhammad, Ijaz Ul Haq, and Sung Wook Baik. 2019. Sensors 19, 11 (2019), 2472.
[4]
Amna Shifa, Mamoona Naveed Asghar, Adeel Ahmed, and Martin Fleury. 2020. Fuzzy-logic threat classification for multi-level selective encryption over real-time video streams. J. Ambient Intell. Human. Comput. 11, 11 (2020), 5369--5397.
[5]
Tanveer Hussain, Khan Muhammad, Javier Del Ser, Sung Wook Baik, and Victor Hugo C de Albuquerque. 2019. Intelligent embedded vision for summarization of multiview videos in IIoT. IEEE Trans. Industr. Info. 16, 4 (2019), 2592--2602.
[6]
Tanveer Hussain, Khan Muhammad, Amin Ullah, Zehong Cao, Sung Wook Baik, and Victor Hugo C de Albuquerque. 2019. Cloud-assisted multiview video summarization using CNN and bidirectional LSTM. IEEE Trans. Industr. Info. 16, 1 (2019), 77--86.
[7]
A. Ullah, K. Muhammad, T. Hussain, S. W. Baik, and V. H. C. De Albuquerque. 2020. Event-oriented 3D convolutional features selection and hash codes generation using PCA for video retrieval. IEEE Access 8 (2020), 196529--196540.
[8]
Amritpal Singh, Sahil Garg, Ravneet Kaur, Shalini Batra, Neeraj Kumar, and Albert Y. Zomaya. 2020. Probabilistic data structures for big data analytics: A comprehensive review. Knowledge-Based Syst. 188 (2020), 104987.
[9]
Derek Anderson, Robert H. Luke, James M. Keller, Marjorie Skubic, Marilyn J. Rantz, and Myra A. Aud. 2008. Modeling human activity from voxel person using fuzzy logic. IEEE Trans. Fuzzy Syst. 17, 1 (2008), 39--49.
[10]
Rangan Das, Sagnik Sen, and Ujjwal Maulik. 2020. A survey on fuzzy deep neural networks. ACM Comput. Surveys 53, 3 (2020), 1--25.
[11]
Song Wei and Hani Hagras. 2019. A hybrid fuzzy football scenes classification system for big video data. In Multimodal Analytics for Next-Generation Big Data Technologies and Applications. Springer, 299--318.
[12]
Farman Ali, Shaker El-Sappagh, and Daehan Kwak. 2019. Fuzzy ontology and LSTM-based text mining: A transportation network monitoring system for assisting travel. Sensors 19, 2 (2019), 234.
[13]
Lotfi A. Zadeh. 1965. Fuzzy sets. Info. Control 8, 3 (1965), 338--353.
[14]
Harish Garg and Gagandeep Kaur. 2020. Quantifying gesture information in brain hemorrhage patients using probabilistic dual hesitant fuzzy sets with unknown probability information. Comput. Industr. Eng. 140 (2020), 106211.
[15]
Qilian Liang and Jerry M. Mendel. 2001. MPEG VBR video traffic modeling and classification using fuzzy technique. IEEE Trans. Fuzzy Syst. 9, 1 (2001), 183--193.
[16]
Eduard Puerto, José Aguilar, C. Lopez, and Danilo Chávez. 2019. Using multilayer fuzzy cognitive maps to diagnose autism spectrum disorder. Appl. Soft Comput. 75 (2019), 58--71.
[17]
Javier Navarro, Faiyaz Doctor, Víctor Zamudio, Rahat Iqbal, Arun Kumar Sangaiah, and Carlos Lino. 2018. Fuzzy adaptive cognitive stimulation therapy generation for alzheimer’s sufferers: Towards a pervasive dementia care monitoring platform. Future Gen. Comput. Syst. 88 (2018), 479--490.
[18]
Zi-Xiao Wei, Faiyaz Doctor, Yan-Xin Liu, Shou-Zen Fan, and Jiann-Shing Shieh. 2020. An optimized type-2 self-organizing fuzzy logic controller applied in anesthesia for propofol dosing to regulate BIS. IEEE Trans. Fuzzy Syst. 28, 6 (2020), 1062--1072.
[19]
B. Yao, H. Hagras, D. Alghazzawi, and M. J. Alhaddad. 2014. A type-2 fuzzy logic based system for linguistic summarization of video monitoring in indoor intelligent environments. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’14). 825--833.
[20]
J. Rožman, H. Hagras, J. A. Perez, D. Clarke, B. Müller, and S. F. Data. 2020. Privacy-preserving gesture recognition with explainable type-2 fuzzy logic based systems. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’20). 1--8.
[21]
Woei Wan Tan and Teck Wee Chua. 2007. Uncertain rule-based fuzzy logic systems: Introduction and new directions (mendel, JM; 2001)[book review]. IEEE Comput. Intell. Mag. 2, 1 (2007), 72--73.
[22]
Yanpeng Qu, Qilin Fu, Changjing Shang, Ansheng Deng, Reyer Zwiggelaar, Minu George, and Qiang Shen. 2020. Fuzzy-rough assisted refinement of image processing procedure for mammographic risk assessment. Appl. Soft Comput. 91 (2020), 106230.
[23]
Jerry M. Mendel and R. I. Bob John. 2002. Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10, 2 (2002), 117--127.
[24]
Ahmad Taher Azar. 2012. Overview of type-2 fuzzy logic systems. Int. J. Fuzzy Syst. Appl. 2, 4 (2012), 1--28.
[25]
Meng Joo Er and Sayantan Mandal. 2015. A survey of adaptive fuzzy controllers: Nonlinearities and classifications. IEEE Trans. Fuzzy Syst. 24, 5 (2015), 1095--1107.
[26]
Chern Hong Lim, Ekta Vats, and Chee Seng Chan. 2015. Fuzzy human motion analysis: A review. Pattern Recogn. 48, 5 (2015), 1773--1796.
[27]
Hossein Ahmadi, Marsa Gholamzadeh, Leila Shahmoradi, Mehrbakhsh Nilashi, and Pooria Rashvand. 2018. Diseases diagnosis using fuzzy logic methods: A systematic and meta-analysis review. Comput. Methods Progr. Biomed. 161 (2018), 145--172.
[28]
Osama Nayel Al Sayaydeh, Mohammed Falah Mohammed, and Chee Peng Lim. 2018. Survey of fuzzy min–max neural network for pattern classification variants and applications. IEEE Trans. Fuzzy Syst. 27, 4 (2018), 635--645.
[29]
Sunny Thukral and Vijay Rana. 2019. Versatility of fuzzy logic in chronic diseases: A review. Med. Hypoth. 122 (2019), 150--156.
[30]
Goli Arji, Hossein Ahmadi, Mehrbakhsh Nilashi, Tarik A. Rashid, Omed Hassan Ahmed, Nahla Aljojo, and Azida Zainol. 2019. Fuzzy logic approach for infectious disease diagnosis: A methodical evaluation, literature, and classification. Biocybernet. Biomed. Eng. 39, 4 (2019), 937--955.
[31]
Kamran Munir, Alberto de Ramón-Fernández, Sohail Iqbal, and Nadeem Javaid. 2019. Neuroscience patient identification using big data and fuzzy logic—An alzheimer’s disease case study. Expert Syst. Appl. 136 (2019), 410--425.
[32]
Jesús Alcalá-Fdez and Jose M. Alonso. 2015. A survey of fuzzy systems software: Taxonomy, current research trends, and prospects. IEEE Trans. Fuzzy Syst. 24, 1 (2015), 40--56.
[33]
Javier Andreu-Perez. 2020. Fuzzy learning and its applications in neural-engineering. Neurocomputing 389 (2020), 196--197.
[34]
Marwa Elbouz, Alfalou Ayman, and Christian Brosseau. 2011. Fuzzy logic and optical correlation-based face recognition method for patient monitoring application in home video surveillance. Optic. Eng. 50, 6 (2011), 067003.
[35]
Yi Zheng and Ping Zheng. 2010. Multisensor image fusion using fuzzy logic for surveillance systems. In Proceedings of the 7th International Conference on Fuzzy Systems and Knowledge Discovery, Vol. 2. IEEE, 588--592.
[36]
R. Badaoui and Adel Al-Jumaily. 2010. Fuzzy logic based human detection for CCTV recording application. In Proceedings of the 6th International Conference on Advanced Information Management and Service (IMS’10).
[37]
Juan Moreno-Garcia, Luis Rodriguez-Benitez, Antonio Fernández-Caballero, and María T. López. 2010. Video sequence motion tracking by fuzzification techniques. Appl. Soft Comput. 10, 1 (2010), 318--331.
[38]
Mario I. Chacon-Murguia and Sergio Gonzalez-Duarte. 2011. An adaptive neural-fuzzy approach for object detection in dynamic backgrounds for surveillance systems. IEEE Trans. Industr. Electron. 59, 8 (2011), 3286--3298.
[39]
David Münch, Joris IJsselmuiden, Michael Arens, and Rainer Stiefelhagen. 2011. High-level situation recognition using fuzzy metric temporal logic, case studies in surveillance and smart environments. In Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVWorkshops’11). IEEE, 882--889.
[40]
Carles Fernández, Pau Baiget, F Xavier Roca, and Jordi Gonzàlez. 2011. Determining the best suited semantic events for cognitive surveillance. Expert Syst. Appl. 38, 4 (2011), 4068--4079.
[41]
Bing-Fei Wu, Chih-Chung Kao, Jhy-Hong Juang, and Yi-Shiun Huang. 2012. A new approach to video-based traffic surveillance using fuzzy hybrid information inference mechanism. IEEE Trans. Intell. Transport. Syst. 14, 1 (2012), 485--491.
[42]
Ansuman Mahapatra, Tusar Kanti Mishra, Pankaj K. Sa, and Banshidhar Majhi. 2013. Background subtraction and human detection in outdoor videos using fuzzy logic. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’13). IEEE, 1--7.
[43]
Auday A. H. Mohamad and Mohammed Osman. 2013. Adaptive median filter background subtractions technique using fuzzy logic. In Proceedings of the International Conference of Chemical, Energy and Environmental Engineering (ICCEEE’13). IEEE, 115--120.
[44]
R. Revathi and M. Hemalatha. 2013. Moving and immovable object in video processing using intuitionistic fuzzy logic. In Proceedings of the 4th International Conference on Computing, Communications and Networking Technologies (ICCCNT’13). IEEE, 1--6.
[45]
Ansuman Mahapatra, Tusar Kanti Mishra, Pankaj K Sa, and Banshidhar Majhi. 2014. Human recognition system for outdoor videos using hidden markov model. AEU-Int. J. Electron. Commun. 68, 3 (2014), 227--236.
[46]
Ahmad Alajarmeh, Rosalina Abdul Salam, Mohd Fadzli Marhusin, and Khairi Abdulrahim. 2014. Real-time video enhancement for various weather conditions using dark channel and fuzzy logic. In Proceedings of the International Conference on Computer and Information Sciences (ICCOINS’14). IEEE, 1--6.
[47]
Piotr Szwed, Pawel Skrzynski, and Wojciech Chmiel. 2016. Risk assessment for a video surveillance system based on fuzzy cognitive maps. Multimedia Tools Appl. 75, 17 (2016), 10667--10690.
[48]
Reza Mohammadi and Reza Javidan. 2017. An adaptive type-2 fuzzy traffic engineering method for video surveillance systems over software defined networks. Multimedia Tools Appl. 76, 22 (2017), 23627--23642.
[49]
Li Liang-qun, Zhan Xi-yang, Liu Zong-xiang, and Xie Wei-xin. 2018. Fuzzy logic approach to visual multi-object tracking. Neurocomputing 281 (2018), 139--151.
[50]
Yanshan Li, Tianyu Guo, Rongjie Xia, and Weixin Xie. 2018. Road traffic anomaly detection based on fuzzy theory. IEEE Access 6 (2018), 40281--40288.
[51]
Miguel A. Molina-Cabello, Ezequiel López-Rubio, Rafael M. Luque-Baena, Enrique Domínguez, and Esteban J. Palomo. 2018. Foreground object detection for video surveillance by fuzzy logic based estimation of pixel illumination states. Logic J. IGPL 26, 6 (2018), 593--604.
[52]
Rahul Raman, Larbi Boubchir, Pankaj Kumar Sa, Banshidhar Majhi, and Sambit Bakshi. 2019. Beyond estimating discrete directions of walk: A fuzzy approach. Mach. Vision Appl. 30, 5 (2019), 901--917.
[53]
Healthcare dataset. ([n.d.]). Retrieved from http://cvprlab.uniparthenope.it.
[54]
Moving cars and pedestrain data. ([n.d.]). Retrieved from http://www.imagefusion.org/images/toet2.
[55]
Surveillance Videos. ([n.d.]). Retrieved from http://homepages.inf.ed.ac.uk/rbf/CAVIAR/Context.
[56]
Surveillance Videos. ([n.d.]). Retrieved from www.research.ibm.com/peoplevision/videoprivacy.htm.
[57]
James L. Crowley, Patrick Reignier, and Sebastien Pesnel. 2004. Context aware vision using image-based active recognition. Retrieved on 18 April, 2021 from https://homepages.inf.ed.ac.uk/rbf/CAVIAR/
[58]
Maciej Szczodrak, Jozef Kotus, Krzysztof Kopaczewski, Kuba Lopatka, Andrzej Czyzewski, and Henryk Krawczyk. 2011. Behavior analysis and dynamic crowd management in video surveillance system. In Proceedings of the 22nd International Workshop on Database and Expert Systems Applications. IEEE, 371--375.
[59]
Arnav Chowdhury and Sanjaya Shankar Tripathy. 2014. Detection of human presence in a surveillance video using fuzzy approach. In Proceedings of the International Conference on Signal Processing and Integrated Networks (SPIN’14). IEEE, 216--219.
[60]
Amin Ullah, Khan Muhammad, Tanveer Hussain, Miyoung Lee, and Sung Wook Baik. 2020. 5 deep LSTM-based sequence learning approaches for action and activity recognition. Deep Learning in Computer Vision: Principles and Applications. CRC Press, Boca Raton, FL, USA.
[61]
Tanveer Hussain, Khan Muhammad, Weiping Ding, Jaime Lloret, Sung Wook Baik, and Victor Hugo C. de Albuquerque. 2020. A comprehensive survey of multi-view video summarization. Pattern Recogn. 109 (2020), 107567.
[62]
Tanveer Hussain, Khan Muhammad, Salman Khan, Amin Ullah, Mi Young Lee, and Sung Wook Baik. 2019. Intelligent baby behavior monitoring using embedded vision in IoT for smart healthcare centers. J. Artif. Intell. Syst. 1, 15 (2019), 2019.
[63]
Alper Yilmaz, Omar Javed, and Mubarak Shah. 2006. Object tracking: A survey. ACM Comput. Surveys 38, 4 (2006), 13–es.
[64]
Dingwen Zhang, Junwei Han, Guangyu Guo, and Long Zhao. 2018. Learning object detectors with semi-annotated weak labels. IEEE Trans. Circ. Syst. Video Technol. 29, 12 (2018), 3622--3635.
[65]
Anh-Tu Nguyen, Tadanari Taniguchi, Luka Eciolaza, Victor Campos, Reinaldo Palhares, and Michio Sugeno. 2019. Fuzzy control systems: Past, present and future. IEEE Comput. Intell. Mag. 14, 1 (2019), 56--68.
[66]
Wei Song and Hani Hagras. 2016. A big-bang big-crunch fuzzy logic based system for sports video scene classification. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’16). IEEE, 642--649.
[67]
Wei Song and Hani Hagras. 2017. A type-2 fuzzy logic system for event detection in soccer videos. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’17). IEEE, 1--6.
[68]
Jethro Shell and Simon Coupland. 2015. Fuzzy transfer learning: Methodology and application. Info. Sci. 293 (2015), 59--79.
[69]
Hua Zuo, Jie Lu, Guangquan Zhang, and Feng Liu. 2018. Fuzzy transfer learning using an infinite gaussian mixture model and active learning. IEEE Trans. Fuzzy Syst. 27, 2 (2018), 291--303.
[70]
Thanh Minh Nguyen and Q. M. Jonathan Wu. 2015. Online feature selection based on fuzzy clustering and its applications. IEEE Trans. Fuzzy Syst. 24, 6 (2015), 1294--1306.
[71]
Vikas Singh, Raghav Dev, Narendra K. Dhar, Pooja Agrawal, and Nishchal K. Verma. 2018. Adaptive type-2 fuzzy approach for filtering salt and pepper noise in grayscale images. IEEE Trans. Fuzzy Syst. 26, 5 (2018), 3170--3176.
[72]
Hong Zhao, Ping Wang, Qinghua Hu, and Pengfei Zhu. 2019. Fuzzy rough set based feature selection for large-scale hierarchical classification. IEEE Trans. Fuzzy Syst. 27, 10 (2019), 1891--1903.
[73]
Renato W. R. De Souza, João Vitor Chaves De Oliveira, Leandro A. Passos, Weiping Ding, João P. Papa, and Victor Albuquerque. 2019. A novel approach for optimum-path forest classification using fuzzy logic. IEEE Trans. Fuzzy Syst. (2019).
[74]
Dingwen Zhang, Junwei Han, Long Zhao, and Deyu Meng. 2019. Leveraging prior-knowledge for weakly supervised object detection under a collaborative self-paced curriculum learning framework. Int. J. Comput. Vision 127, 4 (2019), 363--380.
[75]
Dingwen Zhang, Junwei Han, Long Zhao, and Tao Zhao. 2020. From discriminant to complete: Reinforcement searching-agent learning for weakly supervised object detection. IEEE Trans. Neural Netw. Learn. Syst. 31, 12 (2020), 5549--5560.
[76]
Charlie J. Daniels and Ferdia A. Gallagher. 2017. Unsupervised segmentation of 5D hyperpolarized carbon-13 MRI data using a fuzzy markov random field model. IEEE Trans. Med. Imag. 37, 4 (2017), 840--850.
[77]
Kup-Sze Choi, Xue-Jian He, Vico CL Chiang, Zhaohong Deng, and Jing Qin. 2016. A heuristic force model for haptic simulation of nasogastric tube insertion using fuzzy logic. IEEE Trans. Haptics 9, 3 (2016), 295--310.
[78]
Anil Singh Parihar, Om Prakash Verma, and Chintan Khanna. 2017. Fuzzy-contextual contrast enhancement. IEEE Trans. Image Process. 26, 4 (2017), 1810--1819.
[79]
Chang Ho Kang, Chan Gook Park, and Jin Woo Song. 2016. An adaptive complementary Kalman filter using fuzzy logic for a hybrid head tracker system. IEEE Trans. Instrument. Measure. 65, 9 (2016), 2163--2173.
[80]
Wasseem N. Ibrahem Al-Obaydy and Shahrel Azmin Suandi. 2020. Open-set single-sample face recognition in video surveillance using fuzzy ARTMAP. Neural Comput. Appl. 32, 5 (2020), 1405--1412.
[81]
Gail A. Carpenter, Stephen Grossberg, Natalya Markuzon, John H. Reynolds, David B. Rosen et al. 1992. Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Trans. Neural Netw. 3, 5 (1992), 698--713.
[82]
Seyed Yahya Nikouei, Yu Chen, Alexander Aved, Erik Blasch, and Timothy R. Faughnan. 2019. I-safe: Instant suspicious activity identification at the edge using fuzzy decision making. In Proceedings of the 4th ACM/IEEE Symposium on Edge Computing. 101--112.
[83]
Salman Khan, Khan Muhammad, Shahid Mumtaz, Sung Wook Baik, and Victor Hugo C. de Albuquerque. 2019. Energy-efficient deep CNN for smoke detection in foggy IoT environment. IEEE Internet Things J. 6, 6 (2019), 9237--9245.
[84]
Sandra Eliza Fontes De Avila, Ana Paula Brandão Lopes, Antonio da Luz Jr., and Arnaldo de Albuquerque Araújo. 2011. VSUMM: A mechanism designed to produce static video summaries and a novel evaluation method. Pattern Recogn. Lett. 32, 1 (2011), 56--68.
[85]
Nayyer Aafaq, Ajmal Mian, Wei Liu, Syed Zulqarnain Gilani, and Mubarak Shah. 2019. Video description: A survey of methods, datasets, and evaluation metrics. ACM Comput. Surveys 52, 6 (2019), 1--37.
[86]
Dingwen Zhang, Junwei Han, Le Yang, and Dong Xu. 2018. SPFTN: A joint learning framework for localizing and segmenting objects in weakly labeled videos. IEEE Trans. Pattern Anal. Mach. Intell. 42, 2 (2018), 475--489.
[87]
Le Yang, Houwen Peng, Dingwen Zhang, Jianlong Fu, and Junwei Han. 2020. Revisiting anchor mechanisms for temporal action localization. IEEE Trans. Image Process. 29 (2020), 8535--8548.
[88]
Tanveer Hussain, Khan Muhammad, Amin Ullah, Javier Del Ser, Amir H Gandomi, Muhammad Sajjad, Sung Wook Baik, and Victor Hugo C. de Albuquerque. 2020. Multi-view summarization and activity recognition meet edge computing in IoT environments. IEEE Internet Things J. (2020).
[89]
Yujia Zhang, Xiaodan Liang, Dingwen Zhang, Min Tan, and Eric P. Xing. 2020. Unsupervised object-level video summarization with online motion auto-encoder. Pattern Recogn. Lett. 130 (2020), 376--385.
[90]
Khan Muhammad, Salman Khan, Mohamed Elhoseny, Syed Hassan Ahmed, and Sung Wook Baik. 2019. Efficient fire detection for uncertain surveillance environment. IEEE Trans. Industr. Info. 15, 5 (2019), 3113--3122.
[91]
Mahmudul Hasan, Jonghyun Choi, Jan Neumann, Amit K. Roy-Chowdhury, and Larry S. Davis. 2016. Learning temporal regularity in video sequences. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 733--742.
[92]
Kelton A. P. da Costa, João P. Papa, Leandro A. Passos, Danilo Colombo, Javier Del Ser, Khan Muhammad, and Victor Hugo C. de Albuquerque. 2020. A critical literature survey and prospects on tampering and anomaly detection in image data. Appl. Soft Comput. (2020), 106727.
[93]
Ming Liu, Zhiqian Zhou, Penghui Shang, and Dong Xu. 2019. Fuzzified image enhancement for deep learning in iris recognition. IEEE Trans. Fuzzy Syst. 28, 1 (2019), 92--99.
[94]
Bharath Subramani and Magudeeswaran Veluchamy. 2020. Fuzzy gray level difference histogram equalization for medical image enhancement. J. Med. Syst. 44 (2020), 1--10.
[95]
Shupeng Gui, Haotao N. Wang, Haichuan Yang, Chen Yu, Zhangyang Wang, and Ji Liu. 2019. Model compression with adversarial robustness: A unified optimization framework. In Advances in Neural Information Processing Systems. MIT Press, 1285--1296.
[96]
Khan Muhammad, Tanveer Hussain, and Sung Wook Baik. 2020. Efficient CNN based summarization of surveillance videos for resource-constrained devices. Pattern Recogn. Lett. 130 (2020), 370--375.
[97]
Wu-Yeh Chang. 2019. Research on sports video image based on fuzzy algorithms. J. Visual Commun. Image Represent. 61 (2019), 105--111.
[98]
Zulfiqar Ahmad Khan, Tanveer Hussain, Amin Ullah, Seungmin Rho, Miyoung Lee, and Sung Wook Baik. 2020. Towards efficient electricity forecasting in residential and commercial buildings: A novel hybrid CNN with a LSTM-AE based framework. Sensors 20, 5 (2020), 1399.
[99]
Jing-Jing Wang. 2019. Intelligent recognition method of fuzzy features of surveillance video image based on big data. In Proceedings of the International Conference on Virtual Reality and Intelligent Systems (ICVRIS’19). IEEE, 105--108.
[100]
Elizabeth Varghese, Sabu M. Thampi, and Stefano Berretti. 2020. A psychologically inspired fuzzy cognitive deep learning framework to predict crowd behavior. IEEE Trans. Affect. Comput. (2020).
[101]
Weisheng Li, Jiao Du, Zhengmin Zhao, and Jinyi Long. 2018. Fusion of medical sensors using adaptive cloud model in local laplacian pyramid domain. IEEE Trans. Biomed. Eng. 66, 4 (2018), 1172--1183.
[102]
FengJi Luo, ZhaoYang Dong, Guo Chen, Yan Xu, Ke Meng, YingYing Chen, and KitPo Wong. 2015. Advanced pattern discovery-based fuzzy classification method for power system dynamic security assessment. IEEE Trans. Industr. Info. 11, 2 (2015), 416--426.
[103]
Mohamed Hamdy, Sameh Abd-Elhaleem, and M. A. Fkirin. 2016. Time-varying delay compensation for a class of nonlinear control systems over network via H∞ adaptive fuzzy controller. IEEE Trans. Syst., Man Cybernet.: Syst. 47, 8 (2016), 2114--2124.
[104]
Bo Yao, Hani Hagras, Daniyal Alghazzawi, and Mohammed J. Alhaddad. 2016. A big bang–big crunch type-2 fuzzy logic system for machine-vision-based event detection and summarization in real-world ambient-assisted living. IEEE Trans. Fuzzy Syst. 24, 6 (2016), 1307--1319.
[105]
Khan Muhammad, Jamil Ahmad, and Sung Wook Baik. 2018. Early fire detection using convolutional neural networks during surveillance for effective disaster management. Neurocomputing 288 (2018), 30--42.
[106]
Amin Ullah, Khan Muhammad, Javier Del Ser, Sung Wook Baik, and Victor Hugo C. de Albuquerque. 2018. Activity recognition using temporal optical flow convolutional features and multilayer LSTM. IEEE Trans. Industr. Electron. 66, 12 (2018), 9692--9702.
[107]
Iker Sobron, Javier Del Ser, Iñaki Eizmendi, and Manuel Vélez. 2018. Device-free people counting in IoT environments: New insights, results, and open challenges. IEEE Internet Things J. 5, 6 (2018), 4396--4408.
[108]
R. Chimatapu, H. Hagras, M. Kern, and G. Owusu. 2020. Hybrid deep learning type-2 fuzzy logic systems for explainable AI. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’20). 1--6.
[109]
Amin Ullah, Khan Muhammad, Ijaz Ul Haq, and Sung Wook Baik. 2019. Action recognition using optimized deep autoencoder and CNN for surveillance data streams of non-stationary environments. Future Gen. Comput. Syst. 96 (2019), 386--397.
[110]
Iker Sobron, Javier Del Ser, Iñaki Eizmendi, and Manuel Velez. 2018. A deep learning approach to device-free people counting from WiFi signals. In Proceedings of the International Symposium on Intelligent and Distributed Computing. Springer, 275--286.
[111]
Ijaz Ul Haq, Khan Muhammad, Tanveer Hussain, Soonil Kwon, Maleerat Sodanil, Sung Wook Baik, and Mi Young Lee. 2019. Movie scene segmentation using object detection and set theory. Int. J. Distrib. Sensor Netw. 15, 6 (2019), 1550147719845277.
[112]
Simon Y. Foo. 2000. A fuzzy logic approach to fire detection in aircraft dry bays and engine compartments. IEEE Trans. Industr. Electron. 47, 5 (2000), 1161--1171.
[113]
Paulo Vinicius Koerich Borges and Ebroul Izquierdo. 2010. A probabilistic approach for vision-based fire detection in videos. IEEE Trans. Circ. Syst. Video Technol. 20, 5 (2010), 721--731.
[114]
Olivia Mendoza, Patricia Melín, and Oscar Castillo. 2009. Interval type-2 fuzzy logic and modular neural networks for face recognition applications. Appl. Soft Comput. 9, 4 (2009), 1377--1387.
[115]
Pramit Roy, Sudipta Bhattacharjee, Soumalya Ghosh, Sudip Misra, and Mohammad S Obaidat. 2011. Fire monitoring in coal mines using wireless sensor networks. In Proceedings of the International Symposium on Performance Evaluation of Computer and Telecommunication Systems. IEEE, 16--21.
[116]
Mestan Tekin, Daniel Hissel, Marie-Ccile Pera, and Jean Marie Kauffmann. 2007. Energy-management strategy for embedded fuel-cell systems using fuzzy logic. IEEE Trans. Industr. Electron. 54, 1 (2007), 595--603.
[117]
Faiyaz Doctor, Hani Hagras, and Victor Callaghan. 2004. A fuzzy embedded agent-based approach for realizing ambient intelligence in intelligent inhabited environments. IEEE Trans. Syst., Man Cybernet. Part A: Syst. Hum. 35, 1 (2004), 55--65.
[118]
Ala Mhalla, Thierry Chateau, Sami Gazzah, and Najoua Essoukri Ben Amara. 2018. An embedded computer-vision system for multi-object detection in traffic surveillance. IEEE Trans. Intell. Transport. Syst. 20, 11 (2018), 4006--4018.
[119]
Chen Zhao, Wu Gao, and Feiping Nie. 2019. A memory-efficient hardware architecture for connected component labeling in embedded system. IEEE Trans. Circ. Syst. Video Technol. 30, 9 (2019), 3238--3252.
[120]
Xiaomin Chang, Wei Li, Jin Ma, Ting Yang, and Albert Y. Zomaya. 2020. Interpretable machine learning in sustainable edge computing: A case study of short-term photovoltaic power output prediction. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’20). IEEE, 8981--8985.
[121]
Yan-Jun Liu, Mingzhe Gong, Shaocheng Tong, C. L. Philip Chen, and Dong-Juan Li. 2018. Adaptive fuzzy output feedback control for a class of nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. 26, 5 (2018), 2607--2617.
[122]
Liheng Chen, Shasha Fu, Yuxin Zhao, Ming Liu, and Jianbin Qiu. 2019. State and fault observer design for switched systems via an adaptive fuzzy approach. IEEE Trans. Fuzzy Syst. 28, 9 (2019), 2107--2118.
[123]
Dapeng Li, Lei Liu, Yan-Jun Liu, Shaocheng Tong, and C. L. Philip Chen. 2019. Fuzzy approximation-based adaptive control of nonlinear uncertain state constrained systems with time-varying delays. IEEE Trans. Fuzzy Syst. 28, 8 (2019), 1620--1630.
[124]
Shiqi Zheng, Peng Shi, Shuoyu Wang, and Yan Shi. 2018. Event triggered adaptive fuzzy consensus for interconnected switched multiagent systems. IEEE Trans. Fuzzy Syst. 27, 1 (2018), 144--158.
[125]
Yiming Zhou, Cong Shen, and Mihaela van der Schaar. 2019. A non-stationary online learning approach to mobility management. IEEE Trans. Wireless Commun. 18, 2 (2019), 1434--1446.
[126]
Alireza Borhani and Matthias Pätzold. 2018. A non-stationary channel model for the development of non-wearable radio fall detection systems. IEEE Trans. Wireless Commun. 17, 11 (2018), 7718--7730.
[127]
Luigi Vigneri, Thrasyvoulos Spyropoulos, and Chadi Barakat. 2018. Low cost video streaming through mobile edge caching: Modelling and optimization. IEEE Trans. Mobile Comput. 18, 6 (2018), 1302--1315.
[128]
Chern Hong Lim, Anhar Risnumawan, and Chee Seng Chan. 2014. A scene image is nonmutually exclusive—A fuzzy qualitative scene understanding. IEEE Trans. Fuzzy Syst. 22, 6 (2014), 1541--1556.
[129]
Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 248--255.
[130]
Peter Kok Keong Loh and Deepak Subramanian. 2010. Fuzzy classification metrics for scanner assessment and vulnerability reporting. IEEE Trans. Info. Forensics Secur. 5, 4 (2010), 613--624.
[131]
Mengran Gou, Ziyan Wu, Angels Rates-Borras, Octavia Camps, Richard J. Radke et al. 2018. A systematic evaluation and benchmark for person re-identification: Features, metrics, and datasets. IEEE Trans. Pattern Anal. Mach. Intell. 41, 3 (2018), 523--536.
[132]
Peter Howarth and Stefan Rüger. 2004. Evaluation of texture features for content-based image retrieval. In Proceedings of the International Conference on Image and Video Retrieval. Springer, 326--334.
[133]
Ammara Anjum Khan, Mehran Abolhasan, Wei Ni, Justin Lipman, and Abbas Jamalipour. 2019. A hybrid-fuzzy logic guided genetic algorithm (H-FLGA) approach for resource optimization in 5G VANETs. IEEE Trans. Vehic. Technol. 68, 7 (2019), 6964--6974.
[134]
Prakash K. Ray, Shiba R. Paital, Asit Mohanty, Y. S. Eddy Foo, Ashok Krishnan, Hoay Beng Gooi, and Gehan A. J. Amaratunga. 2019. A hybrid firefly-swarm optimized fractional order interval type-2 fuzzy PID-PSS for transient stability improvement. IEEE Trans. Industry Appl. 55, 6 (2019), 6486--6498.
[135]
Shouyi Yin, Shibin Tang, Xinhan Lin, Peng Ouyang, Fengbin Tu, Leibo Liu, and Shaojun Wei. 2018. A high throughput acceleration for hybrid neural networks with efficient resource management on FPGA. IEEE Trans. Comput.-Aided Design Integr. Circ. Syst. 38, 4 (2018), 678--691.
[136]
Imo Eyoh, Robert John, Geert De Maere, and Erdal Kayacan. 2018. Hybrid learning for interval type-2 intuitionistic fuzzy logic systems as applied to identification and prediction problems. IEEE Trans. Fuzzy Syst. 26, 5 (2018), 2672--2685.
[137]
Dalibor Krleža and Krešimir Fertalj. 2016. Graph matching using hierarchical fuzzy graph neural networks. IEEE Trans. Fuzzy Syst. 25, 4 (2016), 892--904.
[138]
Balint Petro, Nikola Kasabov, and Rita M. Kiss. 2019. Selection and optimization of temporal spike encoding methods for spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 31, 2 (2019), 358--370.
[139]
Shuangming Yang, Jiang Wang, Bin Deng, Chen Liu, Huiyan Li, Chris Fietkiewicz, and Kenneth A. Loparo. 2018. Real-time neuromorphic system for large-scale conductance-based spiking neural networks. IEEE Trans. Cybernet. 49, 7 (2018), 2490--2503.
[140]
Elena Mocanu, Decebal Constantin Mocanu, Phuong H. Nguyen, Antonio Liotta, Michael E. Webber, Madeleine Gibescu, and Johannes G. Slootweg. 2018. On-line building energy optimization using deep reinforcement learning. IEEE Trans. Smart Grid 10, 4 (2018), 3698--3708.
[141]
Harshita Patel and Ghanshyam Singh Thakur. 2017. Classification of imbalanced data using a modified fuzzy-neighbor weighted approach. Int. J. Intell. Eng. Syst. 10, 1 (2017), 56--64.
[142]
Alberto Fernández, María José del Jesus, and Francisco Herrera. 2009. On the influence of an adaptive inference system in fuzzy rule based classification systems for imbalanced data-sets. Expert Syst. Appl. 36, 6 (2009), 9805--9812.
[143]
Yunlong Lu, Xiaohong Huang, Yueyue Dai, Sabita Maharjan, and Yan Zhang. 2019. Differentially private asynchronous federated learning for mobile edge computing in urban informatics. IEEE Trans. Industr. Info. 16, 3 (2019), 2134--2143.
[144]
Khan Muhammad, Salman Khan, Javier Del Ser, and Victor Hugo C. de Albuquerque. 2020. Deep learning for multigrade brain tumor classification in smart healthcare systems: A prospective survey. IEEE Trans. Neural Netw. Learn. Syst. (2020).
[145]
Muhammad Aminul Islam, Derek T. Anderson, Anthony Pinar, Timothy Craig Havens, Grant Scott, and James M. Keller. 2019. Enabling explainable fusion in deep learning with fuzzy integral neural networks. IEEE Trans. Fuzzy Syst. 28, 7 (2019), 1291--1300.
[146]
Thilo Spinner, Udo Schlegel, Hanna Schäfer, and Mennatallah El-Assady. 2019. explAIner: A visual analytics framework for interactive and explainable machine learning. IEEE Trans. Visual. Comput. Graph. 26, 1 (2019), 1064--1074.
[147]
Khan Muhammad, Tanveer Hussain, Javier Del Ser, Vasile Palade, and Victor Hugo C. De Albuquerque. 2019. DeepReS: A deep learning-based video summarization strategy for resource-constrained industrial surveillance scenarios. IEEE Trans. Industr. Info. 16, 9 (2019), 5938--5947.
[148]
Turgay Celik, Huseyin Ozkaramanlt, and Hasan Demirel. 2007. Fire pixel classification using fuzzy logic and statistical color model. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing-(ICASSP’07), Vol. 1. IEEE, I–1205.
[149]
Santiago Garcia-Jimenez, Aranzazu Jurio, Miguel Pagola, Laura De Miguel, Edurne Barrenechea, and Humberto Bustince. 2017. Forest fire detection: A fuzzy system approach based on overlap indices. Appl. Soft Comput. 52 (2017), 834--842.
[150]
Ijaz Ul Haq, Amin Ullah, Khan Muhammad, Mi Young Lee, and Sung Wook Baik. 2019. Personalized movie summarization using deep cnn-assisted facial expression recognition. Complexity 2019 (2019), 3581419.
[151]
Juan C. Nunez, Raul Cabido, Juan J. Pantrigo, Antonio S. Montemayor, and Jose F. Velez. 2018. Convolutional neural networks and long short-term memory for skeleton-based human activity and hand gesture recognition. Pattern Recogn. 76 (2018), 80--94.
[152]
T. Banerjee, J. M. Keller, M. Skubic, and E. Stone. 2014. Day or night activity recognition from video using fuzzy clustering techniques. IEEE Trans. Fuzzy Syst. 22, 3 (2014), 483--493.
[153]
Weiming Hu, D. Xie, Tieniu Tan, and S. Maybank. 2004. Learning activity patterns using fuzzy self-organizing neural network. IEEE Trans. Syst., Man Cybernet. Part B (Cybernet.) 34, 3 (2004), 1618--1626.
[154]
Jiehao Li, Junzheng Wang, Hui Peng, Longbin Zhang, Yingbai Hu, and Hang Su. 2020. Neural fuzzy approximation enhanced autonomous tracking control of the wheel-legged robot under uncertain physical interaction. Neurocomputing 410 (2020), 342--353.
[155]
Y. Zhang, X. Ma, J. Zhang, M. S. Hossain, G. Muhammad, and S. U. Amin. 2019. Edge intelligence in the cognitive internet of things: Improving sensitivity and interactivity. IEEE Network 33, 3 (2019), 58--64.
[156]
T. Han, K. Muhammad, T. Hussain, J. Lloret, and S. W. Baik. 2020. An efficient deep learning framework for intelligent energy management in IoT networks. IEEE Internet Things J. 8, 5, (2020), 3170--3179.
[157]
Muhammad Sajjad, Mansoor Nasir, Fath U. Min Ullah, Khan Muhammad, Arun Kumar Sangaiah, and Sung Wook Baik. 2019. Raspberry pi assisted facial expression recognition framework for smart security in law-enforcement services. Info. Sci. 479 (2019), 416--431.
[158]
Thang Le Duc, Rafael García Leiva, Paolo Casari, and Per-Olov Östberg. 2019. Machine learning methods for reliable resource provisioning in edge-cloud computing: A survey. ACM Comput. Surv. 52, 5, Article 94 (Sept. 2019), 39 pages.
[159]
C. Sonmez, A. Ozgovde, and C. Ersoy. 2019. Fuzzy workload orchestration for edge computing. IEEE Trans. Netw. Serv. Manage. 16, 2 (2019), 769--782.
[160]
Gregory Ditzler, Manuel Roveri, Cesare Alippi, and Robi Polikar. 2015. Learning in nonstationary environments: A survey. IEEE Comput. Intell. Mag. 10, 4 (2015), 12--25.
[161]
Jesus L. Lobo, Javier Del Ser, Ibai Laña, Miren Nekane Bilbao, and Nikola Kasabov. 2018. Drift detection over non-stationary data streams using evolving spiking neural networks. In Proceedings of the International Symposium on Intelligent and Distributed Computing. Springer, 82--94.
[162]
G. Nhivekar, S. Nirmale, and R. Mudholkar. 2013. A survey of fuzzy logic tools for fuzzy–based system design. In Proceedings of the International Conference on Recent Trends in Information Technology and Computer Science (ICRTITCS’13). 25--28.
[163]
Christian Wagner. 2013. Juzzy—A java based toolkit for type-2 fuzzy logic. In Proceedings of the IEEE Symposium on Advances in Type-2 Fuzzy Logic Systems (T2FUZZ’13). IEEE, 45--52.
[164]
Josie McCulloch. 2017. Fuzzycreator: A python-based toolkit for automatically generating and analysing data-driven fuzzy sets. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’17). IEEE, 1--6.
[165]
Jesus L. Lobo, Javier Del Ser, Albert Bifet, and Nikola Kasabov. 2020. Spiking neural networks and online learning: An overview and perspectives. Neural Netw. 121 (2020), 88--100.
[166]
Simei Gomes Wysoski, Lubica Benuskova, and Nikola Kasabov. 2010. Evolving spiking neural networks for audiovisual information processing. Neural Netw. 23, 7 (2010), 819--835.
[167]
Friedemann Zenke and Surya Ganguli. 2018. Superspike: Supervised learning in multilayer spiking neural networks. Neural Comput. 30, 6 (2018), 1514--1541.
[168]
Chinki Chandhok and Soni Chaturvedi. 2012. Adaptation of spiking neural networks for image clustering. Int. J. Video Image Process. Netw. Secur. 12, 03 (2012), 8--13.
[169]
Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S. Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 1 (2021), 4--24.
[170]
Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. 2019. Skeleton-based action recognition with directed graph neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 7912--7921.
[171]
Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler, and Raquel Urtasun. 2017. 3D graph neural networks for RGBD semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision. 5199--5208.
[172]
Franco Scarselli, Sweah Liang Yong, Marco Gori, Markus Hagenbuchner, Ah Chung Tsoi, and Marco Maggini. 2005. Graph neural networks for ranking web pages. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence (WI’05). IEEE, 666--672.
[173]
Amina Adadi and Mohammed Berrada. 2018. Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access 6 (2018), 52138--52160.
[174]
Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador García, Sergio Gil-López, Daniel Molina, Richard Benjamins et al. 2020. Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Info. Fusion 58 (2020), 82--115.
[175]
M. Shamim Hossain, Ghulam Muhammad, and Nadra Guizani. 2020. Explainable AI and mass surveillance system-based healthcare framework to combat COVID-I9 like pandemics. IEEE Netw. 34, 4 (2020), 126--132.
[176]
J. Adams and H. Hagras. 2020. A type-2 fuzzy logic approach to explainable AI for regulatory compliance, fair customer outcomes and market stability in the global financial sector. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’20). 1--8.
[177]
Alberto Fernandez, Francisco Herrera, Oscar Cordon, Maria Jose del Jesus, and Francesco Marcelloni. 2019. Evolutionary fuzzy systems for explainable artificial intelligence: Why, when, what for, and where to? IEEE Comput. Intell. Mag. 14, 1 (2019), 69--81.
[178]
David Leslie. 2019. Understanding artificial intelligence ethics and safety. Retrieved from https://arXiv:1906.05684.
[179]
Kavitha Bharathi Shanmugam and S. Vengataasalam. 2018. Fuzzy-based trusted security for mobile grid systems. Int. J. Netw. Virtual Org. 18, 3 (2018), 211--226.
[180]
Iti Chaturvedi, Ranjan Satapathy, Sandro Cavallari, and Erik Cambria. 2019. Fuzzy commonsense reasoning for multimodal sentiment analysis. Pattern Recogn. Lett. 125 (2019), 264--270.
[181]
Shweta Taneja, Bhawna Suri, Sachin Gupta, Himanshu Narwal, Anchit Jain, and Akshay Kathuria. 2018. A fuzzy logic based approach for data classification. In Data Engineering and Intelligent Computing. Springer, 605--616.
[182]
Charu Gupta, Amita Jain, and Nisheeth Joshi. 2018. Fuzzy logic in natural language processing—A closer view. Procedia Comput. Sci. 132 (2018), 1375--1384.

Cited By

View all
  • (2024)Deep Complex Gated Recurrent Networks-Based IoT Network Intrusion Detection SystemsSensors10.3390/s2418593324:18(5933)Online publication date: 13-Sep-2024
  • (2024)Exploring Biomedical Video Source Identification: Transitioning from Fuzzy-Based Systems to Machine Learning ModelsFuzzy Information and Engineering10.26599/FIE.2023.927003016:1(33-48)Online publication date: Mar-2024
  • (2024)Video data security prevention system based on artificial intelligenceInternational Conference on Computer Application and Information Security (ICCAIS 2023)10.1117/12.3025662(33)Online publication date: 8-Apr-2024
  • Show More Cited By

Index Terms

  1. Fuzzy Logic in Surveillance Big Video Data Analysis: Comprehensive Review, Challenges, and Research Directions

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Computing Surveys
      ACM Computing Surveys  Volume 54, Issue 3
      April 2022
      836 pages
      ISSN:0360-0300
      EISSN:1557-7341
      DOI:10.1145/3461619
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 21 May 2021
      Accepted: 01 December 2020
      Revised: 01 November 2020
      Received: 01 August 2020
      Published in CSUR Volume 54, Issue 3

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Video surveillance
      2. big data
      3. big video data
      4. fuzzy logic
      5. fuzzy logic survey
      6. fuzzy tutorial
      7. neural networks
      8. soft computing techniques
      9. video summarization
      10. video surveillance survey

      Qualifiers

      • Research-article
      • Research
      • Refereed

      Funding Sources

      • China Ministry of Education Distinguished Possessor
      • Consolidated Research Group MATHMODE

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)122
      • Downloads (Last 6 weeks)8
      Reflects downloads up to 26 Sep 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Deep Complex Gated Recurrent Networks-Based IoT Network Intrusion Detection SystemsSensors10.3390/s2418593324:18(5933)Online publication date: 13-Sep-2024
      • (2024)Exploring Biomedical Video Source Identification: Transitioning from Fuzzy-Based Systems to Machine Learning ModelsFuzzy Information and Engineering10.26599/FIE.2023.927003016:1(33-48)Online publication date: Mar-2024
      • (2024)Video data security prevention system based on artificial intelligenceInternational Conference on Computer Application and Information Security (ICCAIS 2023)10.1117/12.3025662(33)Online publication date: 8-Apr-2024
      • (2024)Fuzzy Multimodal Graph Reasoning for Human-Centric Instructional Video GroundingIEEE Transactions on Fuzzy Systems10.1109/TFUZZ.2024.343603032:9(5046-5059)Online publication date: 1-Sep-2024
      • (2024)A Robust Deep Learning Framework Based on Spectrograms for Heart Sound ClassificationIEEE/ACM Transactions on Computational Biology and Bioinformatics10.1109/TCBB.2023.324743321:4(936-947)Online publication date: Jul-2024
      • (2024)A novel dataset based on indoor teacher-student interactive mode using AIoTInternet of Things10.1016/j.iot.2023.10104425(101044)Online publication date: Apr-2024
      • (2023)Deep Learning Based Sports Video Classification ResearchApplied Mathematics and Nonlinear Sciences10.2478/amns.2023.2.000299:1Online publication date: 12-Jul-2023
      • (2023)Analysis of the practical education model and its value in the context of big data in university civic educationApplied Mathematics and Nonlinear Sciences10.2478/amns.2023.1.003449:1Online publication date: 5-Jun-2023
      • (2023)A High Utility Itemset Mining Algorithm Based on Particle FilterMathematical Problems in Engineering10.1155/2023/79416732023:1Online publication date: 23-Feb-2023
      • (2023)GAN-IoTVS: A Novel Internet of Multimedia Things-Enabled Video Streaming Compression Model Using GAN and Fuzzy LogicIEEE Sensors Journal10.1109/JSEN.2023.331608823:23(29434-29441)Online publication date: 1-Dec-2023
      • Show More Cited By

      View Options

      Get Access

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format.

      HTML Format

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media