Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2382936.2383048acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

Using quantitative dose-response data to benchmark B-cell epitope prediction for antipeptide antibodies

Published: 07 October 2012 Publication History

Abstract

A mechanistically framed consensus on benchmark data and benchmarking procedures for B-cell epitope prediction methods has yet to emerge, thus presenting a critical window of opportunity to establish standards of practice that circumvent epistemic inconsistencies of casting the epitope-prediction task as a binary classification problem. As an alternative to dichotomous qualitative data that historically have been the basis for benchmarking B-cell epitope prediction, quantitative dose-response data on antibody-mediated biological effects are more meaningful from an information-theoretic perspective in that the said effects may be expressed as probabilities (e.g., of functional inhibition by antibody) for which the Shannon information entropy (SIE) can be evaluated as a measure of informativeness; accordingly, half-maximal biological effects (e.g., at median inhibitory concentrations of antibody) correspond to maximally informative data while undetectable and maximal biological effects correspond to minimally informative data. This applies to benchmarking B-cell epitope prediction for the design of peptide-based immunogens that elicit antipeptide antibodies with functionally relevant cross-reactivity. Presently, the Immune Epitope Database (IEDB) contains relatively few quantitative dose-response data on such cross-reactivity. Only a small fraction of these IEDB data are maximally informative, and more of them are minimally informative (i.e., with zero SIE). Nevertheless, the much more numerous qualitative data in the IEDB suggest how to overcome the paucity of informative benchmark data.

References

[1]
S. Bavari, D. D. Pless, E. R. Torres, F. J. Lebeda, M. A. Olson. Identifying the principal protective antigenic determinants of type A botulinum neurotoxin. Vaccine, 16(19):1850--56, 1998.
[2]
M. Bounias. Algebraic potential of the Hill equation as an alternative tool for plotting dose (or time)/effects relationships in toxicology: a theoretical study. Fundam Clin Pharmacol, 3(1):1--9, 1989.
[3]
S. E. Caoili. A structural-energetic basis for B-cell epitope prediction. Prot Pept Lett, 13(7):743--51, 2006.
[4]
S. E. Caoili. Immunization with peptide-protein conjugates: Impact on benchmarking B-cell epitope prediction for vaccine design. Prot Pept Lett, 17(3):386--98, 2010.
[5]
S. E. Caoili. Benchmarking B-cell epitope prediction for the design of peptide-based vaccines: problems and prospects. J Biomed Biotechnol, 2010:910524, 2010.
[6]
S. E. Caoili. B-cell epitope prediction for peptide-based vaccine design: towards a paradigm of biological outcomes for global health. Immunome Res, 7(2):2, 2011.
[7]
Y. Charoenvit, V. Fallarme, W. O. Rogers, J. B. Sacci Jr., M. Kaur, J. C. Aguiar, et al. Development of two monoclonal antibodies against Plasmodium falciparum sporozoite surface protein 2 and mapping of B-cell epitopes. Infect Immun, 65(8):3430--7, 1997.
[8]
B. Dietzschold, M. Gore, D. Marchadier, H. S. Niu, H. M. Bunschoten, L. Otvos Jr., et al. Structural and immunological characterization of a linear virus-neutralizing epitope of the rabies virus glycoprotein and its possible use in a synthetic vaccine. J Virol, 64(8):3804--9, 1990.
[9]
X. N. Dong, Y. Qi, J. Ying, X. Chen, Y. H. Chen. Candidate peptide-vaccine induced potent protection against CSFV and identified a principal sequential neutralizing determinant on E2. Vaccine, 24(4):426--34, 2006.
[10]
Y. El-Manzalawy, V. Honavar. Recent advances in B-cell epitope prediction methods. Immunome Res, 6 Suppl 2:S2, 2010.
[11]
W. A. Ernst, H. J. Kim, T. M. Tumpey, A. D. Jansen, W. Tai, D. V. Cramer, et al. Protection against H1, H5, H6 and H9 influenza A infection with liposomal matrix 2 epitope vaccines. Vaccine, 24(24):5158--68, 2006.
[12]
V. Fedorov, F. Mannino, R. Zhang. Consequences of dichotomization. Pharm Stat, 8(1):50--61, 2009.
[13]
V. A. Ferro, W. H. Stimson. Fertility-disrupting potential of synthetic peptides derived from the beta-subunit of follicle-stimulating hormone. Am J Reprod Immunol, 40(3):187--97, 1998.
[14]
E. Goncharova, E. Ryzhikov, V. Poryvaev, L. Bulychev, N. Karpyshev, A. Maksyutov, A. B. Ryzhikov. Intranasal immunization with inactivated tick-borne encephalitis virus and the antigenic peptide 89--119 protects mice against intraperitoneal challenge. Int J Med Microbiol, 296 Suppl 40:195--201, 2006.
[15]
J. A. Greenbaum, P. Haste Andersen, M. Blythe, H. H. Bui, R. E. Cachau, J. Crowe, et al. Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J Mol Recognit, 20(2):75--82, 2007.
[16]
H. Grosfeld, B. Velan, M. Leitner, S. Cohen, S. Lustig, B. E. Lachmi, A. Shafferman. Semliki Forest virus E2 envelope epitopes induce a nonneutralizing humoral response which protects mice against lethal challenge. J Virol, 63(8):3416--22, 1989.
[17]
A. V. Hill. The nature of oxyhaemoglobin, with a note on its molecular weight. J Physiol, 40:4--7, 1910.
[18]
T. P. Hopp, K. R. Woods. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A, 78(6):3824--8, 1981.
[19]
E. T. Jaynes. Information theory and statistical mechanics. Phys Rev, 106(4):620--30, 1957.
[20]
E. T. Jaynes. Information theory and statistical mechanics. II. Phys Rev, 108(2):171--90, 1957.
[21]
M. Kaur, H. Chug, H. Singh, S. Chandra, M. Mishra, M. Sharma, R. Bhatnagar. Identification and characterization of immunodominant B-cell epitope of the C-terminus of protective antigen of Bacillus anthracis. Mol Immunol, 46(10):2107--15, 2009.
[22]
M. J. Koolen, M. A. Borst, M. C. Horzinek, W. J. Spaan. Immunogenic peptide comprising a mouse hepatitis virus A59 B-cell epitope and an influenza virus T-cell epitope protects against lethal infection. J Virol, 64(12):6270--3, 1990.
[23]
A. G. Krasko, A. B. Moshnikova, A. T. Kozhich, L. D. Tchikin, V. T. Ivanov, A. S. Vladyko, I. S. Lukashevich. Lassa virus glycoproteins: antigenic and immunogenic properties of synthetic peptides to GP1. Arch Virol, 115(1-2):133--7, 1990.
[24]
W. G. Laver, G. M. Air, R. G. Webster, S. J. Smith-Gill. Epitopes on protein antigens: misconceptions and realities. Cell, 61(4):553--6, 1990.
[25]
L. Leder, H. Wendt, C. Schwab, I. Jelesarov, S. Bornhauser, F. Ackermann, H. R. Bosshard. Genuine and apparent cross-reaction of polyclonal antibodies to proteins and peptides. Eur J Biochem, 219(1-2):73--81, 1994.
[26]
W. Liu, Z. Peng, Z. Liu, Y. Lu, J. Ding, Y. H. Chen. High epitope density in a single recombinant protein molecule of the extracellular domain of influenza A virus M2 protein significantly enhances protective immunity. Vaccine, 23(3):366--71, 2004.
[27]
P. Millet, M. L. Kalish, W. E. Collins, R. L. Hunter. Effect of adjuvant formulations on the selection of B-cell epitopes expressed by a malaria peptide vaccine. Vaccine, 10(8):547--50, 1992.
[28]
O. E. Obeid, C. M. Stanley, M. W. Steward. Immunological analysis of the protective responses to the chimeric synthetic peptide representing T- and B-cell epitopes from the fusion protein of measles virus. Virus Res, 42(1-2):173--80, 1996.
[29]
J. K. Pullen, G. W. Anderson Jr., S. L. Welkos, A. M. Friedlander. Analysis of the Yersinia pestis V protein for the presence of linear antibody epitopes. Infect Immun, 66(2):521--7, 1998.
[30]
C. E. Shannon. A mathematical theory of communication. Bell Syst Tech J, 27, 1948.
[31]
C. H. Su, N. R. Pal, K. L. Lin, I. F. Chung. Identification of amino acid propensities that are strong determinants of linear B-cell epitope using neural networks. PLoS One, 7(2):e30617, 2012.
[32]
B. H. Swords, D. J. Carr, J. E. Blalock, K. H. Berecek. An antibody directed against a peptide encoded by RNA complementary to mRNA for vasopressin recognizes putative vasopressin receptors. Neuroendocrinology, 51(4):487--92, 1990.
[33]
M. H. Van Regenmortel. Immunoinformatics may lead to a reappraisal of the nature of B cell epitopes and of the feasibility of synthetic peptide vaccines. J Mol Recognit, 19(3):183--7, 2006.
[34]
M. H. Van Regenmortel. Synthetic peptide vaccines and the search for neutralization B cell epitopes. Open Vaccine J, 2:33--44, 2009.
[35]
R. Vita, B. Peters, A. Sette. The curation guidelines of the immune epitope database and analysis resource. Cytometry A, 73(11):1066--70, 2008.
[36]
R. Vita, K. Vaughan, L. Zarebski, N. Salimi, W. Fleri, H. Grey, et al. Curation of complex, context-dependent immunological data. BMC Bioinformatics, 7:341, 2006.
[37]
B. Wahlin, A. Sjolander, N. Ahlborg, R. Udomsangpetch, A. Scherf, D. Mattei, et al. Involvement of Pf155/RESA and cross-reactive antigens in Plasmodium falciparum merozoite invasion in vitro. Infect Immun, 60(2):443--9, 1992.
[38]
H. W. Wang, Y. C. Lin, T. W. Pai, H. T. Chang. Prediction of B-cell linear epitopes with a combination of support vector machine classification and amino acid propensity identification. J Biomed Biotechnol, 2011:432830, 2011.
[39]
J. N. Weiss. The Hill equation revisited: uses and misuses. FASEB J, 11(11):835--41, 1997.
[40]
S. Worgall, A. Krause, J. Qiu, J. Joh, N. R. Hackett, R. G. Crystal. Protective immunity to Pseudomonas aeruginosa induced with a capsid-modified adenovirus expressing P. aeruginosa OprF. J Virol, 81(24):13801--8, 2007.
[41]
S. C. Wu, C. W. Lin. Neutralizing peptide ligands selected from phage-displayed libraries mimic the conformational epitope on domain III of the Japanese encephalitis virus envelope protein. Virus Res, 76(1):59--69, 2001.
[42]
H. Xin, S. Dziadek, D. R. Bundle, J. E. Cutler. Synthetic glycopeptide vaccines combining beta-mannan and peptide epitopes induce protection against candidiasis. Proc Natl Acad Sci U S A, 105(36):13526--31, 2008.
[43]
Q. Zhang, P. Wang, Y. Kim, P. Haste-Andersen, J. Beaver, P. E. Bourne, et al. Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res, 36(Web Server issue):W513--W518, 2008.
[44]
P. Zou, W. Liu, Y. H. Chen. The epitope recognized by a monoclonal antibody in influenza A virus M2 protein is immunogenic and confers immune protection. Int Immunopharmacol, 5(4):631--5, 2005.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
BCB '12: Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine
October 2012
725 pages
ISBN:9781450316705
DOI:10.1145/2382936
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 07 October 2012

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. B-cell epitope prediction
  2. Shannon information entropy
  3. antipeptide antibodies
  4. dose-response relationship
  5. functionally relevant cross-reactivity
  6. peptide-based vaccine design

Qualifiers

  • Research-article

Conference

BCB' 12
Sponsor:

Acceptance Rates

BCB '12 Paper Acceptance Rate 33 of 159 submissions, 21%;
Overall Acceptance Rate 254 of 885 submissions, 29%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 57
    Total Downloads
  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Feb 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media