Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article
Open access

On the Complexity of the Orbit Problem

Published: 22 June 2016 Publication History

Abstract

We consider higher-dimensional versions of Kannan and Lipton’s Orbit Problem—determining whether a target vector space ν may be reached from a starting point x under repeated applications of a linear transformation A. Answering two questions posed by Kannan and Lipton in the 1980s, we show that when ν has dimension one, this problem is solvable in polynomial time, and when ν has dimension two or three, the problem is in NPRP.

Supplementary Material

a23-chonev-apndx.pdf (chonev.zip)
Supplemental movie, appendix, image and software files for, On the Complexity of the Orbit Problem

References

[1]
V. Arvind and T. Vijayaraghavan. 2011. The orbit problem is in the GapL hierarchy. J. Comb. Optim. 21, 1 (2011), 124--137.
[2]
Alan Baker. 1975. Transcendental Number Theory. Cambridge University Press, Cambridge.
[3]
A. Baker and G. Wüstholz. 1993. Logarithmic forms and group varieties. J. Reine Angew. Math. 442 (1993), 19--62.
[4]
Amir M. Ben-Amram, Samir Genaim, and Abu Naser Masud. 2012. On the termination of integer loops. ACM Trans. Program. Lang. Syst. 34, 4 (2012), 16.
[5]
Jean Berstel and Maurice Mignotte. 1976. Deux propriétés décidables des suites récurrentes linéaires. Bull. Soc. Math. France 104 (1976), 175--184.
[6]
P. Blanksby and H. Montgomery. 1971. Algebraic integers near the unit circle. Acta Arith. (1971), 355--369.
[7]
V. D. Blondel and N. Portier. 2002. The presence of a zero in an integer linear recurrent sequence is NP-hard to decide. Linear Algebra and Its Applications 351 (2002), 91--98.
[8]
M. Braverman. 2006. Termination of integer linear programs. In Proceedings of the 18th International Conference on Computer Aided Verification (CAV, LNCS 4144). Springer, Berlin, 372--385.
[9]
Jin-yi Cai, Richard J. Lipton, and Yechezkel Zalcstein. 2000. The complexity of the ABC problem. SIAM J. Comput. 29, 6 (2000), 1878--1888.
[10]
Ventsislav Chonev, Joël Ouaknine, and James Worrell. 2013. The orbit problem in higher dimensions. In STOC. ACM, New York, NY, 941--950.
[11]
Ventsislav Chonev, Joël Ouaknine, and James Worrell. 2015. The polyhedron-hitting problem. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’15). SIAM, Philadelphia, PA, 940--956. http://dl.acm.org/citation.cfm?id=2722129.2722193.
[12]
H. Cohen. 1993. A Course in Computational Algebraic Number Theory. Springer, Berlin.
[13]
Graham Everest, Alf van der Poorten, Thomas Ward, and Igor Shparlinski. 2003. Recurrence Sequences. American Mathematical Society, Washington DC.
[14]
Emmanuel Hainry. 2008. Reachability in linear dynamical systems. In Logic and Theory of Algorithms. Springer, Berlin, 241--250.
[15]
V. Halava, T. Harju, M. Hirvensalo, and J. Karhumäki. 2005. Skolem’s Problem -- On the Border between Decidability and Undecidability. Technical Report 683. Turku Centre for Computer Science.
[16]
G. Hansel. 1986. Une démonstration simple du théorème de Skolem-Mahler-Lech. Theor. Comput. Sci. 43 (1986), 91--98.
[17]
Michael A. Harrison. 1969. Lectures on Linear Sequential Machines. Academic Press, New York, NY.
[18]
R. Kannan and R. Lipton. 1986. Polynomial-time algorithm for the orbit problem. J. ACM 33, 4 (1986), 808--821.
[19]
Ravindran Kannan and Richard J. Lipton. 1980. The orbit problem is decidable. In Proceedings of the 12th Annual ACM Symposium on Theory of Computing (STOC). ACM, New York, NY, 252--261.
[20]
L. Kronecker. 1875. Zwei sätze über gleichungen mit ganzzahligen koeffizienten. J. Reine Angew. Math. 53 (1875), 173--175.
[21]
Christer Lech. 1953. A note on recurring series. Arkiv för Matematik 2 (1953), 417--421.
[22]
A. K. Lenstra, H. W. Lenstra, and L. Lovász. 1982. Factoring polynomials with rational coefficients. Math. Ann. 261 (1982), 515--534.
[23]
B. Litow. 1997. A decision method for the rational sequence problem. In Electronic Colloquium on Computational Complexity (ECCC), Vol. 4.
[24]
K. Mahler. 1935. Eine arithmetische eigenschaft der Taylor-koeffizienten rationaler funktionen. Proc. Akad. Wet. Amsterdam 38 (1935), 51--60.
[25]
K. Mahler and J. W. S. Cassels. 1956. On the Taylor coefficients of rational functions. Math. Proc. Cambr. Philos. Soc. 52 (1 1956), 39--48. Issue 01.
[26]
M. Mignotte. 1982. Some useful bounds. Comput. Algebr. (1982), 259--263.
[27]
M. Mignotte, T. Shorey, and R. Tijdeman. 1984. The distance between terms of an algebraic recurrence sequence. Jour. Reine Angew. Math. 349 (1984), 63--76.
[28]
Joël Ouaknine and James Worrell. 2012. Decision problems for linear recurrence sequences. In Reachability Problems, Alain Finkel, Jérôme Leroux, and Igor Potapov (Eds.). Lecture Notes in Computer Science, Vol. 7550. Springer, Berlin, 21--28.
[29]
V. Pan. 1996. Optimal and nearly optimal algorithms for approximating polynomial zeros. Comput. Math. Appl. 31, 12 (1996), 97--138.
[30]
Arto Salomaa and Matti Soittola. 1978. Automata—Theoretic Aspects of Formal Power Series. Springer-Verlag, Berlin.
[31]
Arnold Schönhage. 1979. On the power of random access machines. In Automata, Languages and Programming, Hermann Maurer (Ed.). Lecture Notes in Computer Science, Vol. 71. Springer, Berlin, 520--529.
[32]
Th. Skolem. 1934. Ein verfahren zur behandlung gewisser exponentialer gleichungen und diophantischer gleichungen. Skand. Mat. Kongr. 8 (1934), 163--188.
[33]
I. Stewart and D. Tall. 2002. Algebraic Number Theory and Fermat’s Last Theorem (3rd ed.). A. K. Peters.
[34]
T. Tao. 2008. Structure and Randomness: Pages from Year One of a Mathematical Blog. American Mathematical Society, Washington, DC.
[35]
Sergey Tarasov and Mikhail Vyalyi. 2011. Orbits of linear maps and regular languages. In Computer Science -- Theory and Applications, Alexander Kulikov and Nikolay Vereshchagin (Eds.). Lecture Notes in Computer Science, Vol. 6651. Springer, Berlin, 305--316.
[36]
Ashish Tiwari. 2004. Termination of linear programs. In Computer Aided Verification. Springer, Berlin, 70--82.
[37]
Alfred Jacobus van der Poorten. 1977. Linear forms in logarithms in the p-adic case. Transcend. Theor. Adv. Appl. (1977), 29--57.
[38]
N. Vereshchagin. 1985. Occurrence of zero in a linear recursive sequence. Math. Notes 38 (1985), 609--615.
[39]
Richard Zippel. 1997. Zero testing of algebraic functions. Inform. Process. Lett. 61, 2 (1997), 63--67.

Cited By

View all

Index Terms

  1. On the Complexity of the Orbit Problem

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Journal of the ACM
    Journal of the ACM  Volume 63, Issue 3
    September 2016
    303 pages
    ISSN:0004-5411
    EISSN:1557-735X
    DOI:10.1145/2957788
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 22 June 2016
    Accepted: 01 December 2015
    Revised: 01 November 2015
    Received: 01 April 2014
    Published in JACM Volume 63, Issue 3

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Linear transformations
    2. Skolem’s problem
    3. linear recurrence sequences
    4. matrix orbits
    5. termination of linear programs

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • ERC

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)64
    • Downloads (Last 6 weeks)9
    Reflects downloads up to 23 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Solving Skolem's problem for the k–generalized Fibonacci sequence with negative indicesJournal of Number Theory10.1016/j.jnt.2023.10.017257(273-299)Online publication date: Apr-2024
    • (2024) The membership problem for subsemigroups of is NP-complete Information and Computation10.1016/j.ic.2023.105132296(105132)Online publication date: Jan-2024
    • (2024)Porous invariants for linear systemsFormal Methods in System Design10.1007/s10703-024-00444-363:1-3(235-271)Online publication date: 1-Oct-2024
    • (2023)The Power of Positivity2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)10.1109/LICS56636.2023.10175758(1-11)Online publication date: 26-Jun-2023
    • (2023)On the Identity and Group Problems for Complex Heisenberg MatricesReachability Problems10.1007/978-3-031-45286-4_4(42-55)Online publication date: 5-Oct-2023
    • (2023)Model Checking Linear Dynamical Systems under Floating-point RoundingTools and Algorithms for the Construction and Analysis of Systems10.1007/978-3-031-30823-9_3(47-65)Online publication date: 22-Apr-2023
    • (2022)Identity Testing for Radical ExpressionsProceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science10.1145/3531130.3533331(1-11)Online publication date: 2-Aug-2022
    • (2022)O-Minimal Invariants for Discrete-Time Dynamical SystemsACM Transactions on Computational Logic10.1145/350129923:2(1-20)Online publication date: 14-Jan-2022
    • (2022)What’s decidable about linear loops?Proceedings of the ACM on Programming Languages10.1145/34987276:POPL(1-25)Online publication date: 12-Jan-2022
    • (2022)Polynomially ambiguous probabilistic automata on restricted languagesJournal of Computer and System Sciences10.1016/j.jcss.2022.02.002127(53-65)Online publication date: Aug-2022
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Full Access

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media