Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article
Free access

Substitution-Permutation Networks, Pseudorandom Functions, and Natural Proofs

Published: 10 December 2015 Publication History

Abstract

This article takes a new step towards closing the gap between pseudorandom functions (PRF) and their popular, bounded-input-length counterparts. This gap is both quantitative, because these counterparts are more efficient than PRF in various ways, and methodological, because these counterparts usually fit in the substitution-permutation network paradigm (SPN), which has not been used to construct PRF.
We give several candidate PRF Fi that are inspired by the SPN paradigm. Most of our candidates are more efficient than previous ones. Our main candidates are as follows.
F1 : {0,1}n → {0,1}n is an SPN whose S-box is a random function on b bits given as part of the seed. We prove that F1 resists attacks that run in time ≤ 2ϵb.
F2 : {0,1}n → {0,1}n is an SPN where the S-box is (patched) field inversion, a common choice in practical constructions. We show that F2 is computable with boolean circuits of size n ⋅ logO(1) n and that it has exponential security 2Ω(n) against linear and differential cryptanalysis.
F3 : {0,1}n → {0,1} is a nonstandard variant on the SPN paradigm, where “states” grow in length. We show that F3 is computable with TC0 circuits of size n1 + ϵ, for any ϵ > 0, and that it is almost 3-wise independent.
F4 : {0,1}n → {0,1} uses an extreme setting of the SPN parameters (one round, one S-box, no diffusion matrix). The S-box is again (patched) field inversion. We show that F4 is computable by circuits of size n ⋅ logO(1) n and that it fools all parity tests on ≤20.9n outputs.
Assuming the security of our candidates, our work narrows the gap between the Natural Proofs barrier and existing lower bounds in three models: circuits, TC0 circuits, and Turing machines.

References

[1]
Scott Aaronson and Avi Wigderson. 2009. Algebrization: A new barrier in complexity theory. ACM Trans. Comput. Theory 1, 1 (2009) Article 2. DOI=http://dx.doi.org/10.1145/1490270.1490272
[2]
Adi Akavia, Andrej Bogdanov, Siyao Guo, Akshay Kamath, and Alon Rosen. 2014. Candidate weak pseudorandom functions in AC0 ˆ MOD2. In Proceedings of the 5th Conference on Innovations in Theoretical Computer Science (ITCS'14). ACM, New York, NY, 251--260. DOI=http://dx.doi.org/10.1145/2554797.2554821
[3]
Eric Allender and Michal Koucký. 2010. Amplifying lower bounds by means of self-reducibility. J. ACM 57, 3, (2010) Article 14. DOI=http://dx.doi.org/10.1145/1706591.1706594
[4]
Noga Alon, Oded Goldreich, Johan Håastad, and René Peralta. 1992. Simple constructions of almost k-wise independent random variables. Random Struct. Algorith. 3, 3 (1992), 289--304. DOI=http://dx.doi.org/10.1002/rsa.3240030308
[5]
Noga Alon, Oded Goldreich, and Yishay Mansour. 2003. Almost k-wise independence versus k-wise independence. Inf. Process. Lett. 88, 3 (2003), 107--110. DOI=http://dx.doi.org/10.1016/S0020-0190(03)00359-4
[6]
Theodore Baker, John Gill, and Robert Solovay. 1975. Relativizations of the P=?NP question. SIAM J. Comput. 4, 4 (1975), 431--442. DOI=http://dx.doi.org/10.1137/0204037
[7]
Abhishek Banerjee and Chris Peikert. 2014. New and improved key-homomorphic pseudorandom functions. In Proceedings of the 34th Annual Cryptology Conference (CRYPTO), Part I. 353--370. DOI=http://dx.doi.org/10.1007/978-3-662-44371-2_20
[8]
Abhishek Banerjee, Chris Peikert, and Alon Rosen. 2012. Pseudorandom functions and lattices. In Proceedings of the 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT). 719--737. DOI=http://dx.doi.org/10.1007/978-3-642-29011-4_42
[9]
Louay M. J. Bazzi. 2009. Polylogarithmic independence can fool DNF formulas. SIAM J. Comput. 38, 6 (2009), 2220--2272. DOI=http://dx.doi.org/10.1137/070691954
[10]
Mihir Bellare, Joe Kilian, and Phillip Rogaway. 2000. The security of the cipher block chaining message authentication code. J. Comput. Syst. Sci. 61, 3 (Dec. 2000), 362--399. DOI=http://dx.doi.org/10.1006/jcss.1999.1694
[11]
E. Biham and A. Shamir. 1991. Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4, 1 (1991), 3--72. DOI=http://10.1007/BF00630563
[12]
Mark Braverman. 2009. Poly-logarithmic independence fools AC0 circuits. In Proceedings of the 24th Annual IEEE Conference on Computational Complexity (CCC'09). IEEE Computer Society, 3--8. http://dx.doi.org/10.1109/CCC.2009.35
[13]
Alex Brodsky and Shlomo Hoory. 2008. Simple permutations mix even better. Random Struct. Algorith. 32, 3 (May 2008), 274--289. DOI=http://dx.doi.org/10.1002/rsa.v32:3
[14]
Hong-Su Cho, Soo Hak Sung, Daesung Kwon, Jung-Keun Lee, Jung Hwan Song, and Jongin Lim. 2004. New method for bounding the maximum differential probability for SPNs and ARIA. In Proceedings of the 7th International Conference on Information Security and Cryptology (ICISC'04), Choon-sik Park and Seongtaek Chee (Eds.), Springer-Verlag, Berlin, Heidelberg, 21--32. DOI=http://dx.doi.org/10.1007/11496618_4
[15]
Joan Daemen. 1995. Cipher and hash function design strategies based on linear and differential cryptanalysis. Ph.D. Dissertation, K.U. Leuven, Leuven, Flanders, Belgium.
[16]
Joan Daemen and Vincent Rijmen. 2002. The Design of Rijndael: AES - The Advanced Encryption Standard. Springer Verlag, New York, Inc., Secaucus, NJ.
[17]
Shimon Even and Yishay Mansour. 1997. A construction of a cipher from a single pseudorandom permutation. J. Cryptol. 10, 3 (June 1997), 151--162. DOI=http://dx.doi.org/10.1007/s001459900025
[18]
Anna Gál, Kristoffer Arnsfelt Hansen, Michal Koucký, Pavel Pudlák, and Emanuele Viola. 2013. Tight bounds on computing error-correcting codes by bounded-depth circuits with arbitrary gates. IEEE Trans. Inform. Theory 59, 10 (2013), 6611--6627. DOI=http://dx.doi.org/10.1109/TIT.2013.2270275
[19]
Shuhong Gao, Joachim von zur Gathen, Daniel Panario, and Victor Shoup. 2000. Algorithms for exponentiation in finite fields. J. Symb. Comput. 29, 6 (June 2000), 879--889. DOI=http://dx.doi.org/10.1006/jsco.1999.0309
[20]
Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. 2011. Grøstl: A SHA-3 candidate. http://www.groestl.info.
[21]
Craig Gentry and Zulfikar Ramzan. 2004. Eliminating random permutation oracles in the Even-Mansour Cipher. In Proceedings of the 10th International Conference on the Theory and Application of Cryptology and Information security (ASIACRYPT). 32--47. DOI=http://dx.doi.org/10.1007/978-3-540-30539-2_3
[22]
A. Gerasoulis. 1988. A fast algorithm for the multiplication of generalized Hilbert matrices with vectors. Math. Comp. 50 (1988), 179--188. DOI=http://dx.doi.org/10.1090/S0025-5718-1988-0917825-9
[23]
Oded Goldreich. 2001. Foundations of Cryptography: Volume 1. Cambridge University Press, New York, NY.
[24]
Oded Goldreich, Shafi Goldwasser, and Silvio Micali. 1986. How to construct random functions. J. ACM 33, 4 (August 1986), 792--807. DOI=http://dx.doi.org/10.1145/6490.6503
[25]
Oded Goldreich and Leonid Levin. 1989. A hard-core predicate for all one-way functions. In Proceedings of the 21st annual ACM Symposium on Theory of Computing (STOC'89), D. S. Johnson (Ed.), ACM, New York, NY, 25--32. DOI=http://dx.doi.org/10.1145/73007.73010
[26]
W. T. Gowers. 1996. An almost m-wise independent random permutation of the cube. Combinatorics, Probab. Comput. 5, 2 (1996), 119--130. DOI=http://dx.doi.org/10.1017/S0963548300001917
[27]
Iftach Haitner, Omer Reingold, and Salil P. Vadhan. 2010. Efficiency improvements in constructing pseudorandom generators from one-way functions. In Proceedings of the ACM Symposium on Theory of Computing (STOC'10). ACM, New York, NY, 437--446. DOI=http://dx.doi.org/10.1145/1806689.1806750
[28]
Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. 1999. A pseudorandom generator from any one-way function. SIAM J. Comput. 28, 4 (March 1999), 1364--1396. DOI=http://dx.doi.org/10.1137/S0097539793244708
[29]
Alexander Healy and Emanuele Viola. 2006. Constant-depth circuits for arithmetic in finite fields of characteristic two. In Proceedings of the 23rd Annual Conference on Theoretical Aspects of Computer Science (STACS'06). Bruno Durand and Wolfgang Thomas (Eds.), Springer-Verlag, Berlin, Heidelberg, 672--683. DOI=http://dx.doi.org/10.1007/11672142_55
[30]
William Hesse, Eric Allender, and David A. Mix Barrington. 2002. Uniform constant-depth threshold circuits for division and iterated multiplication. J. Comput. Syst. Sci. 65, 4 (December 2002), 695--716. DOI=http://dx.doi.org/10.1016/S0022-0000(02)00025-9
[31]
Shlomo Hoory, Avner Magen, Steven Myers, and Charles Rackoff. 2005. Simple permutations mix well. Theor. Comput. Sci. 348, 2 (December 2005), 251--261. DOI=http://dx.doi.org/10.1016/j.tcs.2005.09.016
[32]
T. Jakobsen and L. R. Knudsen. 2001. Attacks on block ciphers of low algebraic degree. J. Cryptol. 14, 3 (January 2001), 197--210. DOI=http://dx.doi.org/10.1007/s00145-001-0003-x
[33]
Ju-Sung Kang, Seokhie Hong, Sangjin Lee, Okyeon Yi, Choonsik Park, and Jongin Lim. 2001. Practical and provable security against differential and linear cryptanalysis for substitution-permutation networks. ETRI J. 23, 4 (Dec. 2001), 158--167. DOI=http://dx.doi.org/10.4218/etrij.01.0101.0402
[34]
Liam Keliher, Henk Meijer, and Stafford E. Tavares. 2001. New method for upper bounding the maximum average linear hull probability for SPNs. In Proceedings of the International Conference on the Theory and Application of Cryptographic Techniques: Advances in Cryptology (EUROCRYPT'01). Birgit Pfitzmann (Ed.), Springer-Verlag, London, 420--436.
[35]
Lars R. Knudsen. 1994. Truncated and higher order differentials. In Proceedings of the 2nd Internatinal Workshop on Fast Software Encryption (FSE). 196--211. DOI=http://dx.doi.org/10.1007/3-540-60590-8_16
[36]
Swastik Kopparty. 2011. On the complexity of powering in finite fields. In Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC'11). ACM, New York, NY, 489--498. DOI=http://dx.doi.org/10.1145/1993636.1993702
[37]
Eyal Kushilevitz and Noam Nisan. 1997. Communication Complexity. Cambridge University Press, New York, NY.
[38]
Michael Luby and Charles Rackoff. 1988. How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 17, 2 (April 1988), 373--386. DOI=http://dx.doi.org/10.1137/0217022
[39]
M. Matsui. 1994. Linear cryptanalysis method for DES cipher. In Proceedings of the Workshop on the Theory and Application of Cryptographic Techniques on Advances in Cryptology (EUROCRYPT'93), Tor Helleseth (Ed.). Springer-Verlag New York, Inc., Secaucus, NJ, 386--397.
[40]
Eric Miles and Emanuele Viola. 2012. Substitution-permutation networks, pseudorandom functions, and natural proofs. In Proceedings of the 32nd Annual Cryptology Conference (CRYPTO). 68--85. DOI=http://dx.doi.org/10.1007/978-3-642-32009-5_5
[41]
Joseph Naor and Moni Naor. 1993. Small-bias probability spaces: Efficient constructions and applications. SIAM J. Comput. 22, 4 (August 1993), 838--856. DOI=http://dx.doi.org/10.1137/0222053
[42]
Moni Naor and Omer Reingold. 1999. On the construction of pseudorandom permutations: Luby-Rackoff revisited. J. Cryptol. 12, 1 (January 1999), 29--66. DOI=http://dx.doi.org/10.1007/PL00003817
[43]
Moni Naor and Omer Reingold. 2004. Number-theoretic constructions of efficient pseudo-random functions. J. ACM 51, 2 (March 2004), 231--262. DOI=http://dx.doi.org/10.1145/972639.972643
[44]
Moni Naor, Omer Reingold, and Alon Rosen. 2002. Pseudorandom functions and factoring. SIAM J. Comput. 31, 5 (May 2002), 1383--1404. DOI=http://dx.doi.org/10.1137/S0097539701389257
[45]
Kaisa Nyberg. 1993. Differentially uniform mappings for cryptography. In Proceedings of the Workshop on the Theory and Application of Cryptographic Techniques on Advances in Cryptology (EUROCRYPT'93). Tor Helleseth (Ed.), Springer-Verlag New York, Inc., Secaucus, NJ, 55--64.
[46]
Josef Pieprzyk. 1991. On bent permutations. In Proceedings of the International Conference on Finite Fields, Coding Theory, and Advances in Communications and Computing. Lecture Notes in Pure and Applied Math, Vol. 141. Marcel Dekker, Inc.
[47]
Zulfikar Ramzan and Leonid Reyzin. 2000. On the round security of symmetric-key cryptographic primitives. In Proceedings of the 20th Annual International Cryptology Conference on Advances in Cryptology (CRYPTO'00), Mihir Bellare (Ed.)., Springer-Verlag, London, 376--393.
[48]
Alexander Razborov and Steven Rudich. 1997. Natural proofs. J. Comput. Syst. Sci. 55, 1 (August 1997), 24--35. DOI=http://dx.doi.org/10.1006/jcss.1997.1494
[49]
Alexander A. Razborov. 2009. A simple proof of Bazzi's theorem. ACM Trans. Comput. Theory 1, 1 (February 2009). Article 3. DOI=http://dx.doi.org/10.1145/1490270.1490273
[50]
Ron M. Roth and Gadiel Seroussi. 1985. On generator matrices of MDS codes. IEEE Trans. Inf. Theor. 31, 6 (November 1985), 826--830. DOI=http://dx.doi.org/10.1109/TIT.1985.1057113
[51]
Claude Shannon. 1949. Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 4 (1949), 656--715. DOI=http://dx.doi.org/10.1002/j.1538-7305.1949.tb00928.x
[52]
Salil P. Vadhan and Colin Jia Zheng. 2012. Characterizing pseudoentropy and simplifying pseudorandom generator constructions. In Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC'12). ACM, New York, NY, 817--836. DOI=http://dx.doi.org/10.1145/2213977.2214051
[53]
Joachim von zur Gathen and Jürgen Gerhard. 2003. Modern Computer Algebra (2nd ed.). Cambridge University Press, New York, NY.
[54]
Ryan Williams. 2011. Non-uniform ACC circuit lower bounds. In Proceedings of the IEEE Conference on Computational Complexity (CCC). 115--125. DOI=http://dx.doi.org/10.1109/CCC.2011.36
[55]
Hongjun Wu. 2011. The hash function JH. http://www3.ntu.edu.sg/home/wuhj/research/jh/index.html.

Cited By

View all
  • (2024)Indifferentiability of 3-Round Confusion-Diffusion NetworksSecurity and Cryptography for Networks10.1007/978-3-031-71073-5_7(140-161)Online publication date: 11-Sep-2024
  • (2023)Lightweight Cryptography for Connected Vehicles Communication Security on Edge DevicesElectronics10.3390/electronics1219409012:19(4090)Online publication date: 29-Sep-2023
  • (2023)Hard Languages in NP ∩ coNP and NIZK Proofs from Unstructured HardnessProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585119(1243-1256)Online publication date: 2-Jun-2023
  • Show More Cited By

Index Terms

  1. Substitution-Permutation Networks, Pseudorandom Functions, and Natural Proofs

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Journal of the ACM
    Journal of the ACM  Volume 62, Issue 6
    December 2015
    304 pages
    ISSN:0004-5411
    EISSN:1557-735X
    DOI:10.1145/2856350
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 10 December 2015
    Accepted: 01 September 2015
    Revised: 01 August 2015
    Received: 01 September 2012
    Published in JACM Volume 62, Issue 6

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Advanced Encryption Standard
    2. Pseudorandom function
    3. natural proofs
    4. substitution-permutation network

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)215
    • Downloads (Last 6 weeks)74
    Reflects downloads up to 12 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Indifferentiability of 3-Round Confusion-Diffusion NetworksSecurity and Cryptography for Networks10.1007/978-3-031-71073-5_7(140-161)Online publication date: 11-Sep-2024
    • (2023)Lightweight Cryptography for Connected Vehicles Communication Security on Edge DevicesElectronics10.3390/electronics1219409012:19(4090)Online publication date: 29-Sep-2023
    • (2023)Hard Languages in NP ∩ coNP and NIZK Proofs from Unstructured HardnessProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585119(1243-1256)Online publication date: 2-Jun-2023
    • (2023)Area–Time Efficient Implementation of NIST Lightweight Hash Functions Targeting IoT ApplicationsIEEE Internet of Things Journal10.1109/JIOT.2022.322951610:9(8083-8095)Online publication date: 1-May-2023
    • (2022)Extremely efficient constructions of hash functions, with applications to hardness magnification and PRFsProceedings of the 37th Computational Complexity Conference10.4230/LIPIcs.CCC.2022.23(1-37)Online publication date: 20-Jul-2022
    • (2022)The exact complexity of pseudorandom functions and the black-box natural proof barrier for bootstrapping results in computational complexityProceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3519935.3520010(962-975)Online publication date: 9-Jun-2022
    • (2022)FLC: A New Secure and Efficient SPN-Based Scheme for Block Ciphers2022 9th NAFOSTED Conference on Information and Computer Science (NICS)10.1109/NICS56915.2022.10013379(75-80)Online publication date: 31-Oct-2022
    • (2022)Analysis of a New Practical SPN-Based Scheme in the Luby-Rackoff ModelFuture Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications10.1007/978-981-19-8069-5_14(210-224)Online publication date: 20-Nov-2022
    • (2022)Asymptotically Quasi-Optimal CryptographyAdvances in Cryptology – EUROCRYPT 202210.1007/978-3-031-06944-4_11(303-334)Online publication date: 30-May-2022
    • (2021)MPC-Friendly Symmetric Cryptography from Alternating Moduli: Candidates, Protocols, and ApplicationsAdvances in Cryptology – CRYPTO 202110.1007/978-3-030-84259-8_18(517-547)Online publication date: 16-Aug-2021
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Get Access

    Login options

    Full Access

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media