Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/276698.276876acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
Article
Free access

Approximate nearest neighbors: towards removing the curse of dimensionality

Published: 23 May 1998 Publication History
First page of PDF

References

[1]
P,K, Agarwal and J. Matou~ek. Ray shooting and parametric search. In: Proceedings o/the Twenty- Fourth Annual A CM Symposium on Theory of Computing, 1992, pp. 517-526.
[2]
$, Arya and D. Mount. Approximate nearest neighbor searching. In: Proceedings of the Fourth Annual A GM. SIAM Symposium on Discrete Algorithms, 1993, pp. 271-280,
[3]
13, Arya, D,M, Mount, and O. Narayan, Accounting for boundary effects in nearest-neighbor searching. Discrete and Computational Geometry, 16(1996):155-176.
[4]
S, Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for approximate nearest neighbor searching. In: Proceedings of the Fi/th Annual A GM. SIAM Symposium on Discrete Al. gorithms, 1994, pp. 573-582.
[5]
A, Andersson, P. B. Miltersen, $. Riis, M. Thorup, Static dictionaries on AC~ RAMs: Query time O( iogn! loglog n) is necessary and sufficient. In: Proceedings of the 37th Annual IEEE Symposium on Foundations o/Computer Science, 1996, pp. 441-450.
[6]
J.L. Bentley. Multidimensional binary search trees used for associative searching. Communications of the A CM, 18(m75):509-517.
[7]
M. Bern. Approximate closest-point queries in high dimensions. Information Processing Letters, 45(1993):95- 99.
[8]
M.W. Berry, S.T. Dumais, and A.T. Shippy. A case study of latent semantic indexing. U.T. Knoxville Technical Report; CS-95-271, January 1995.
[9]
A. Broder, S. Glassman, M. Manasse, and G. Zweig. Syntactic clustering of the Web. In: Proceedings of the Sixth International F~rld F'fde l~b Conference, pp. 391-404, 1997.
[10]
C. Buddey, A. Singhal, M. Mitra, and G. Salton. New Retrieval Approaches Using SMART: TREC 4. In: Pro. ceedings of the Fourth Text Retrieval Conference, National Institute of Standards and Technology, 1995.
[11]
W.A. Burkhard and R.M. Keller. Some approaches to Best-Match File Searching. Communications of the ACM, 16(1973):230-236.
[12]
T. Bozkaya and M. Ozsoyoglu. Distance-Based Indexing for High-Dimensional Metric Spaces, In: Proceedings of the A CM SIGMOD International Conference on Management of Data (SIGMOD), 1997.
[13]
F. Cazals. Effective Nearest Neighbours 13earchJng on the Hyper-Cube, with Applications to Molecular Clustering. In Proceedings of the l~th Annual A CM Symposium on Computational Geometry, 1998.
[14]
T.M. Chan. Approximate Nearest Neighbor Queries Revisited. In: Proceedings of the 18th Annual A CM Symposium on Computational Geometry, 1997, pp. 352-358.
[15]
K. Clarkson. A randomized algorithm for closest-point queries. SlAM Journal on Computing, 17(1988):830- 847.
[16]
K. Clarkson. An algorithm for approximate closestpoint queries. In: Proceedings of the Tenth Annual ACM Symposium on Computational Geometry, 1994, pp. 160-164.
[17]
K. Clarkson. Nearest Neighbor Queries in Metric Spaces. in: Proceedings of the Twenty. Ninth Annual ACM Symposium on Theory of Computing, 1997, pp. 609-617.
[18]
$. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning with symbolic features. Machine Learning, 10(1993):57-67.
[19]
T.M. Cover and P.E. Hart, Nearest neighbor pattern classification. {EEE Transactions on Information The. ory, 13(1967):21-27.
[20]
$. Deerwester, S. T. Dumais, T.K. Landaner, G.W. Furhas, and R.A. Harshman. Indexing by latent semantic analysis. Journal of the Society fo~ Information Sci. ences, 41(1990):391-407.
[21]
L. Devroye and T.J. Wagner, Nearest neighbor methods in discrimination. In: Handbook of Statistics, vol. 2, P.R. Krishnaiah and L.N. Kanal, eds., North-Holland, 1982.
[22]
D. Dobkin and R. Lipton. Multidimensional search problems. SIAM Journal on Computing, 5(1976):181- 186.
[23]
D. Dolev, Y. Harari, N. Linial, N. Nisan, and M. Parhas. Neighborhood preserving hashing and approximate queries. In: Proceedings of the Fifth Annual A CM-SIAM Symposium on Discrete Algorithms, 1994, pp. 251-259.
[24]
D. Dolev, Y. Harari, and M. Parnas. Finding the neighborhood of a query in a dictionary. In: Proceedings of the ~nd Israel Symposium on Theory and Computing Systems, 1993, pp. 33-42.
[25]
R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. John Wiley & Sons, NY, 1973.
[26]
H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, 1987.
[27]
D. Eppstein, Fast hierarchical clustering and other applicatiom~ of dynamic closest pairs. In: Proceedings of the Ninth A CM-SIAM Symposium on Discrete Algo. rithms, 1998.
[28]
C. Faloutso$, R. Barber, M. Fliclmer, W. Niblack, D. Petkovic, and W. Equitz. Efficient and effective querying by image content. Journal of Intelligent Information Systems, 3( 1994):231-262.
[29]
W. Feller. An introduction to Probability Theory and its Applications. John Wiley & Sons, NY, 1991.
[30]
M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dora, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image and video content: the QBIC system. IEEE Computer, 2s(199~):ea-32.
[31]
W. Frakes and R. Baeza-Yates, editors. Information Retrieval: Data Structures and Algorithms. Prentice- Hall, 1992.
[32]
P. Franld and H. Maehara. The Johnson-Lindenstrauss Lemma and the Sphericity of Some Graphs. Journal of Combinatorial Theory B, 44(1988):355-362.
[33]
M.L. Fredman, J. Koml6s, and E. Szemer~di. Storing a sparse table with O(1) worst case access time. Journal of the ACM, 31(1984):538-544.
[34]
J.K. Friedman, J.L. Bentley, and R.A. Finkel. An algorithm for finding best matches in logarithmic expected time. A CM Transactions on Mathematical Software, 3(1977):209-226.
[35]
A. Gersho and R.M. Gray. Vector Quantization and Data Compression. Kluwer, 1991.
[36]
A. Gionis, P. Indyk, and R. Motwani. Similarity Search in High Dimensions via Hashing. Manuscript, 1997.
[37]
D. Greene, M. Parnas, and F. Yao. Multi-index hashing for information retrieval. In: Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, 1994, pp. 722-731.
[38]
T. Hastie and R. Tibshirani. Discriminant adaptive nearest neighbor classification. In: First InternaSonal Conference on Knowledge Discovery f.4 Data Mining, 1995, pp. 142-149.
[39]
H. HoteUing. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 27( 1933):417-441.
[40]
P. Indyk, R. Motwani, and S. Venkatasubramanian. Geometric Matching Under Noise- Combinatorial Bounds and Algorithms. Manuscript, 1997.
[41]
W.B. Johnson and J. Lindenstrauss. Extensions of Lipshitz mapping into Hilbert space. Contemporary Mathematics, 26(1984):189-206.
[42]
W.B. Jotmson and G. Schechtman. Embedding l~~ into l{'. Acta Mathematica, 149(1982):71-85.
[43]
K. Karhunen. Uber lineare Methoden in dew Wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fennicae, Set. A137, 1947.
[44]
V. Koivune and S. Kassam. Nearest neighbor filters for multivariate data. IEEE l'~rkshop on Nonlinear Signal and Image Processing, 1995.
[45]
J. Kleinberg. Two Algorithms for Nearest-Neighbor Search in High Dimensions. In: Proceeding.~ of the Twenty. Ninth Annual A CM Symposium on Theory of Computing, 1997.
[46]
E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest neighbor in high dimensional spaces. These proceedings.
[47]
R.M. Karp, O. Waarts, and G. Zweig. The bit. vector intersection problem. In: Proceedings of 36th Annual IEEE Symposium on Foundations of Computer Science, 1995, pp. 621-630.
[48]
N. Linial, E. London, and Y. Rabinovich. The geomctry of graphs and some of its algorithmic appllcation~. In: Proceedings of 85th Annual IEEE Symposium on Foundations of Computer Science, 1994, pp. 577-591.
[49]
M. Loire. Fonctions aleastoires de second ordere. Processus Stochastiques et mouvcment Brownian, Hermann, Paris, 1948.
[50]
J. Matou~ek. Reporting points in halfspacc~. In: Computational Geometry: Theory and Applications, 2(1992):169-186.
[51]
S. Meiser. Point location in arrangements of hyperplanes. Information and Computation, 106( 1993):236-- 303.
[52]
N. Megiddo. Applying parallel computation algorlthm~ in the design of serial algorithms. Journal of the A CM al(1983), pp. $52-865.
[53]
M. Minsky and S. Papert. Perceptrona. MIT Prcs~, Cambridge, MA, 1969.
[54]
R. Mot~wani and P. Raghavan. Randomized Aigorithma. Cambridge University Press, 1995.
[55]
A. Pentland, R.W. Picard, and S. Sdaroff. Photobook: tools for content-based manipulation of image databases. In Proceedings of the SPiE Confercncc on Storage and Retrieval of Image and Vidco Databases II, 1994.
[56]
G. Pisier. The volume of convex bodies and Banach space geometry. Cambridge Universit4' Press, 1989.
[57]
G. Salton and M.J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill Book Company, New York, NY, 1983.
[58]
H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading, MA, 1989.
[59]
T. SeUis, N. Roussopoulos and C. Faloutso.q. Multidimensional Access Methods: Trees Have Grown Everywhere. Proceedings of the ~3rd International Conference on Very Large Data Bases (VLDB), 1997, pp. 13-15.
[60]
A.W.M. Smeulders and R. JaJn, eds. Image Databaaca and Multi-media Search. Proceedings of the First International Workshop, IDB-MIvIS '96, Amsterdam Unlversky Press, Amsterdam, 1996.
[61]
J.K. Uhlm~. Satisfying General Pro.,dmity/Similarit.y Queries with Metric Trees. Information ProccaMng Letters, 40(1991):175-179.
[62]
P.N. YiannJlos. Data Structures and Algorithms for Nearest Neighbor Search in General Met. tic Spaces. In: Proceedings of the Second Annual A CM. SIAM Symposium on Discrete Algorithms, 1993, pp. 311-321.
[63]
T. Welch. Bounds on the information retrieval efficiency of static file structures. Technical Report 88, MIT, June 1971.
[64]
A.C. Yao and F.F. Yao, A general approach to ddimensional geometric queries. In: Proceedings of thc Seventeenth Annual A CM Symposium on Theory of Computing, 1985, pp. 163-168.

Cited By

View all
  • (2025)Fast Comparative Analysis of Merge Trees Using Locality Sensitive HashingIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345638331:1(141-151)Online publication date: Jan-2025
  • (2025)Audio feature enhancement based on quaternion filtering and deep hashingNeurocomputing10.1016/j.neucom.2024.128727612(128727)Online publication date: Jan-2025
  • (2025)Language-guided temporal primitive modeling for skeleton-based action recognitionNeurocomputing10.1016/j.neucom.2024.128636613(128636)Online publication date: Jan-2025
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
STOC '98: Proceedings of the thirtieth annual ACM symposium on Theory of computing
May 1998
684 pages
ISBN:0897919629
DOI:10.1145/276698
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 23 May 1998

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Conference

STOC98
Sponsor:

Acceptance Rates

STOC '98 Paper Acceptance Rate 75 of 169 submissions, 44%;
Overall Acceptance Rate 1,469 of 4,586 submissions, 32%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2,004
  • Downloads (Last 6 weeks)263
Reflects downloads up to 23 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2025)Fast Comparative Analysis of Merge Trees Using Locality Sensitive HashingIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345638331:1(141-151)Online publication date: Jan-2025
  • (2025)Audio feature enhancement based on quaternion filtering and deep hashingNeurocomputing10.1016/j.neucom.2024.128727612(128727)Online publication date: Jan-2025
  • (2025)Language-guided temporal primitive modeling for skeleton-based action recognitionNeurocomputing10.1016/j.neucom.2024.128636613(128636)Online publication date: Jan-2025
  • (2025)Self-supervised incomplete cross-modal hashing retrievalExpert Systems with Applications10.1016/j.eswa.2024.125592262(125592)Online publication date: Mar-2025
  • (2024)A Real-Time Global Re-Localization Framework for a 3D LiDAR-Based Navigation SystemSensors10.3390/s2419628824:19(6288)Online publication date: 28-Sep-2024
  • (2024)A Semantic Spatial Structure-Based Loop Detection Algorithm for Visual Environmental SensingRemote Sensing10.3390/rs1610172016:10(1720)Online publication date: 13-May-2024
  • (2024)Deep Supervised Hashing by Fusing Multiscale Deep Features for Image RetrievalInformation10.3390/info1503014315:3(143)Online publication date: 5-Mar-2024
  • (2024)Decoupling Online Ride-Hailing Services: A Privacy Protection Scheme Based on Decentralized IdentityElectronics10.3390/electronics1320406013:20(4060)Online publication date: 15-Oct-2024
  • (2024)Toward Dynamic Data-Driven Time-Slicing LSH for Joinable Table DiscoveryElectronics10.3390/electronics1319392013:19(3920)Online publication date: 3-Oct-2024
  • (2024)Secure and Privacy-Protected Bioinformation Implementation in Air Passenger Transport Based on DLTApplied Sciences10.3390/app1415642614:15(6426)Online publication date: 23-Jul-2024
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media