Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Stochastic Model Checking of Genetic Circuits

Published: 30 December 2014 Publication History

Abstract

Synthetic genetic circuits have a number of exciting potential applications such as cleaning up toxic waste, hunting and killing tumor cells, and producing drugs and bio-fuels more efficiently. When designing and analyzing genetic circuits, researchers are often interested in the probability of observing certain behaviors. Discerning these probabilities typically involves simulating the circuit to produce some time series data and computing statistics over the resulting data. However, for very rare behaviors of complex genetic circuits, it becomes computationally intractable to obtain good results as the number of required simulation runs grows exponentially. It is, therefore, necessary to apply numerical methods to determine these probabilities directly. This article describes how stochastic model checking, a method for determining the likelihood that certain events occur in a system, can by applied to models of genetic circuits by translating them into continuous-time Markov chains (CTMCs) and analyzing them using Markov chain analysis to check continuous stochastic logic (CSL) properties. The utility of this approach is demonstrated with several case studies illustrating how this method can be used to perform design space exploration of two genetic oscillators and two genetic state-holding elements. Our results show that this method results in a substantial speedup as compared with conventional simulation-based approaches.

References

[1]
J. C. Anderson, E. J. Clarke, and A. P. Arkin. 2006. Environmentally controlled invasion of cancer cells by engineering bacteria. J. Mol. Biol. 355, 619--627.
[2]
A. Arkin. 2008. Setting the standard in synthetic biology. Nature Biotech. 26, 771--774.
[3]
S. Atsumi and J. C. Liao 2008. Metabolic engineering for advanced biofuels production from Escherichia coli. Curr. Opin. Biotech. 19, 5, 414--419. Tissue, cell and pathway engineering.
[4]
A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. 2000. Model-checking continuous-time Markov chains. ACM Trans. Comput. Logic 1, 162--170.
[5]
J. Beal and J. Bachrach. 2008. Cells are plausible targets for high-level spatial languages. In Proceedings of the 2nd IEEE International Conference on Slef-Adaptive and Self-Organizing Systems Workshops (SASOW'08). 284--291.
[6]
S. Bhatia and D. Densmore. 2013. Pigeon: A design visualizer for synthetic biology. ACS Synth. Biol. 2, 6, 348--350.
[7]
L. Bilitchenko, A. Liu, S. Cheung, E. Weeding, B. Xia, M. Leguia, J. C. Anderson, and D. Densmore. 2011. Eugene - A domain specific language for specifying and constraining synthetic biological parts, devices, and systems. PLoS ONE 6, 4.
[8]
K. Burrage, M. Hegland, S. Macnamara, and R. Sidje. 2006. A Krylov-based finite state projection algorithm for solving the chemical master equation arising in the discrete modelling of biological systems. In Mam 2006: Markov Anniversary Meeting: An International Conference to Celebrate the 150th Anniversary of the birth of A.A. Markov, A. N. Langville and W. J. Stewart, Eds., Boston Books, Charleston, SC, 21--38.
[9]
Y. Cai, M. L. Wilson, and J. Peccoud. 2010. GenoCAD for iGEM: A grammatical approach to the design of standard-compliant constructs. Nucleic Acids Res. 38, 8, 2637--2644.
[10]
Y. Cao, D. T. Gillespie, and L. R. Petzold. 2006. Efficient step size selection for the tau-leaping simulation method. J. Chem. Phys. 124.
[11]
I. Cases and V. de Lorenzo. 2005. Genetically modified organisms for the environment: Stories of success and failure and what we have learned from them. Int. Microbiol. 8, 213--222.
[12]
D. Chandran, F. T. Bergmann, and H. M. Sauro. 2009. TinkerCell: Modular CAD tool for synthetic biology. J. Biol. Eng. 3, 19.
[13]
F. Ciocchetta, A. Degasperi, J. Hillston, and M. Calder. 2009. Some investigations concerning the CTMC and the ODE model derived from Bio-PEPA. Electron. Notes Theor. Computer Science 229, 1, 145--163. (Proceedings of the 2nd Workshop from Biology to Concurrency and Back (FBTC'08)).
[14]
M. Elowitz and S. Leibler. 2000. A synthetic oscillatory network of transcriptional regulators. Nature 403, 6767, 335--338.
[15]
D. Endy. 2005. Foundations for engineering biology. Nature 438, 449--453.
[16]
T. S. Gardner, C. R. Cantor, and J. J. Collins. 2000. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339--342.
[17]
M. Gibson and J. Bruck. 2000. Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104, 1876--1889.
[18]
D. T. Gillespie. 1977. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 25, 2340--2361.
[19]
D. T. Gillespie and L. R. Petzold. 2003. Tau leaping. J. Chem. Phys. 119, 8229--8234.
[20]
D. T. Gillespie, M. Roh, and L. R. Petzold. 2009. Refining the weighted stochastic simulation algorithm. J. Chem Phys. 130, 17.
[21]
E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang. 2009. Time-bounded model checking of infinite-state continuous-time Markov chains. Fundam. Inf. 95, 129--155.
[22]
T. Henzinger, M. Mateescu, and V. Wolf. 2009. Sliding window abstraction for infinite Markov chains. In Computer Aided Verification, A. Bouajjani and O. Maler, Eds., Lecture Notes in Computer Science Series, vol. 5643, Springer, Berlin/Heidelberg, 337--352.
[23]
A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. 2006. PRISM: A tool for automatic verification of probabilistic systems. In Proc. 12th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS'06), H. Hermanns and J. Palsberg, Eds., Lecture Notes in Computer Science, vol. 3920, Springer, 441--444.
[24]
J.-P. Katoen, D. Klink, M. Leucker, and V. Wolf. 2012. Three-valued abstraction for probabilistic systems. J. Log. Algebr. Program. 81, 4, 356--389.
[25]
H. Kuwahara. 2007. Model abstraction and temporal behavior analysis of genetic regulatory networks. Ph.D. thesis, U. of Utah.
[26]
H. Kuwahara, C. Madsen, I. Mura, C. Myers, A. Tejada, and C. Winstead. 2010. Efficient stochastic simulation to analyze targeted properties of biological systems. In Stochastic Control, C. Myers, Ed., Sciyo, 505--532.
[27]
H. Kuwahara and I. Mura. 2008. An efficient and exact stochastic simulation method to analyze rare events in biochemical systems. J. Chem. Phys. 129, 16.
[28]
H. Kuwahara, C. Myers, N. Barker, M. Samoilov, and A. Arkin. 2006. Automated abstraction methodology for genetic regulatory networks. Trans. Comp. Syst. Biol. VI, 150--175.
[29]
M. Kwiatkowska, G. Norman, and D. Parker 2007. Stochastic model checking. In Formal Methods for the Design of Computer, Communication and Software Systems: Performance Evaluation (SFM'07), M. Bernardo and J. Hillston, Eds., Lecture Notes in Computer Science (Tutorial Volume), vol. 4486, Springer, 220--270.
[30]
C. Madsen. 2013. Stochastic analysis of synthetic genetic circuits. Ph.D. thesis, University of Utah.
[31]
M. A. Marchisio and J. Stelling. 2008. Computational design of synthetic gene circuits with composable parts. Bioinform. 24, 17, 1903--1910.
[32]
M. A. Marchisio and J. Stelling. 2011. Automatic design of digital synthetic gene circuits. PLoS Comput. Biol. 7, 2.
[33]
H. H. McAdams and A. Arkin. 1999. Genetic regulation at the nanomolar scale: It's a noisy business. Trends Genet. 15, 2, 65--69.
[34]
D. E. Muller and W. S. Bartky. 1959. A theory of asynchronous circuits. In Proceedings of the International Symposium on the Theory of Switching. Harvard University Press, Cambridge, MA, 204--243.
[35]
B. Munsky and M. Khammash. 2006. The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124, 4.
[36]
C. J. Myers. 2009. Engineering Genetic Circuits. Chapman and Hall/CRC.
[37]
C. J. Myers, N. Barker, K. Jones, H. Kuwahara, C. Madsen, and N.-P. D. Nguyen. 2009. iBioSim: A tool for the analysis and design of genetic circuits. Bioinform. 25, 21, 2848--2849.
[38]
N. Nguyen, C. Myers, H. Kuwahara, C. Winstead, and J. Keener. 2010. Design and analysis of a robust genetic Muller C-element. J. Theoret. Biol. 264, 2, 174--187.
[39]
M. Pedersen and A. Phillips. 2009. Towards programming languages for genetic engineering of living cells. J. Roy. Soc. Interface 6, (Suppl. 4), S437--S450.
[40]
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. 1992. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. Cambridge University Press.
[41]
J. Quinn, J. Beal, S. Bhatia, P. Cai, J. Chen, K. Clancy, N. J. Hillson, M. Galdzicki, A. Maheshwari, P. Umesh, M. Pocock, C. Rodriguez, G.-B. Stan, and D. Endy. 2013. Synthetic biology open language visual (SBOL Visual), Version 1.0.0. BBF RFC 93.
[42]
C. V. Rao and A. P. Arkin. 2003. Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the gillespie algorithm. J. Phys. Chem. 118, 11.
[43]
D.-K. Ro, E. M. Paradise, M. Ouellet, K. J. Fisher, K. L. Newman, J. M. Ndungu, K. A. Ho, R. A. Eachus, T. S. Ham, J. Kirby, M. C. Y. Chang, S. T. Withers, Y. Shiba, R. Sarpong, and J. D. Keasling. 2006. Production of the antimalarial drug percursor artemisinic acid in engineered yeast. Nature 440.
[44]
A. Slepoy, A. P. Thompson, and S. J. Plimpton. 2008. A constant-time kinetic monte carlo algorithm for simulation of large biochemical reaction networks. J. Chem. Phys. 128, 20, 205101.
[45]
W. J. Stewart. 1994. Introduction to the Numerical Solution of Markov Chains. Priceton University Press, Princeton, NJ.
[46]
J. Stricker, S. Cookson, M. Bennett, W. Mather, L. Tsimring, and J. Hasty. 2008. A fast, robust and tunable synthetic gene oscillator. Nature 456, 516--519.
[47]
S. H. Strogatz. 1994. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering. Westview Press.
[48]
D. Thieffry and R. Thomas. 1995. Dynamical behaviour of biological networks: Immunity control in bacteriophage lamabda. Bull. Math. Biol. 57, 2, 277--297.
[49]
R. Thomas. 1991. Regulatory metworks seen as asynchronous automata: A logical description. J. Theoret. Biol. 153, 1--23.
[50]
J. Tyson and H. Othmer. 1978. The dynamics of feedback control circuits in biochemical pathways. Prog. Theoret. Biol. 5, 1--62.
[51]
P. Waage and C. M. Guldberg. 1864. Studies concerning affinity. Forhandlinger: Videnskabs - Selskabet i Christinia 35.
[52]
C. Winstead, C. Madsen, and C. J. Myers. 2010. iSSA: An incremental stochastic simulation algorithm for genetic circuits. In Proceedings of the International Symposium on Circuits and Systems (ISCAS). IEEE, 553--556.
[53]
B. Yordanov, J. Tumova, C. Belta, I. Cerna, and J. Barnat. 2010. Formal analysis of piecewise affine systems through formula-guided refinement. In Proceedings of the 49th IEEE Conference on Decision and Control (CDC). 5899--5904.
[54]
H. Younes, M. Kwiatkowska, G. Norman, and D. Parker. 2006. Numerical vs. statistical probabilistic model checking. Int. J. Softw. Tools Tech. Trans. (STTT) 8, 216--228.

Cited By

View all
  • (2024)Tools at the Frontiers of Quantitative VerificationTOOLympics Challenge 202310.1007/978-3-031-67695-6_4(90-146)Online publication date: 26-Apr-2024
  • (2023)STAMINA in C++: Modernizing an Infinite-State Probabilistic Model CheckerQuantitative Evaluation of Systems10.1007/978-3-031-43835-6_7(101-109)Online publication date: 15-Sep-2023
  • (2019)Design of Asynchronous Genetic CircuitsProceedings of the IEEE10.1109/JPROC.2019.2916057107:7(1356-1368)Online publication date: Jul-2019
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Journal on Emerging Technologies in Computing Systems
ACM Journal on Emerging Technologies in Computing Systems  Volume 11, Issue 3
Special Issue on Computational Synthetic Biology and Regular Papers
December 2014
219 pages
ISSN:1550-4832
EISSN:1550-4840
DOI:10.1145/2711453
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Journal Family

Publication History

Published: 30 December 2014
Accepted: 01 July 2014
Revised: 01 July 2014
Received: 01 January 2014
Published in JETC Volume 11, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Markov chain analysis
  2. Stochastic model checking
  3. continuous stochastic logic
  4. design space exploration
  5. synthetic genetic circuits

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • National Science Foundation

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)16
  • Downloads (Last 6 weeks)1
Reflects downloads up to 14 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Tools at the Frontiers of Quantitative VerificationTOOLympics Challenge 202310.1007/978-3-031-67695-6_4(90-146)Online publication date: 26-Apr-2024
  • (2023)STAMINA in C++: Modernizing an Infinite-State Probabilistic Model CheckerQuantitative Evaluation of Systems10.1007/978-3-031-43835-6_7(101-109)Online publication date: 15-Sep-2023
  • (2019)Design of Asynchronous Genetic CircuitsProceedings of the IEEE10.1109/JPROC.2019.2916057107:7(1356-1368)Online publication date: Jul-2019
  • (2019)STAMINA: STochastic Approximate Model-Checker for INfinite-State AnalysisComputer Aided Verification10.1007/978-3-030-25540-4_31(540-549)Online publication date: 12-Jul-2019
  • (2019)Approximation Techniques for Stochastic Analysis of Biological SystemsAutomated Reasoning for Systems Biology and Medicine10.1007/978-3-030-17297-8_12(327-348)Online publication date: 12-Jun-2019
  • (2018)Toward reproducible disease models using the Systems Biology Markup LanguageSIMULATION10.1177/0037549718793214(003754971879321)Online publication date: 6-Sep-2018
  • (2018) i B io S im 3: A Tool for Model-Based Genetic Circuit Design ACS Synthetic Biology10.1021/acssynbio.8b000788:7(1560-1563)Online publication date: 26-Jun-2018
  • (2017)A standard-enabled workflow for synthetic biologyBiochemical Society Transactions10.1042/BST2016034745:3(793-803)Online publication date: 15-Jun-2017
  • (2016)The Probabilistic Model Checking LandscapeProceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science10.1145/2933575.2934574(31-45)Online publication date: 5-Jul-2016
  • (2015)Computational Synthetic Biology: Progress and the Road AheadIEEE Transactions on Multi-Scale Computing Systems10.1109/TMSCS.2015.24784421:1(19-32)Online publication date: 1-Jan-2015

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media