Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

On Discovery of Spatiotemporal Influence-Based Moving Clusters

Published: 11 March 2015 Publication History

Abstract

A moving object cluster is a set of objects that move close to each other for a long time interval. Existing works have utilized object trajectories to discover moving object clusters efficiently. In this article, we define a spatiotemporal influence-based moving cluster that captures spatiotemporal influence spread over a set of spatial objects. A spatiotemporal influence-based moving cluster is a sequence of spatial clusters, where each cluster is a set of nearby objects, such that each object in a cluster influences at least one object in the next immediate cluster and is also influenced by an object from the immediate preceding cluster. Real-life examples of spatiotemporal influence-based moving clusters include diffusion of infectious diseases and spread of innovative ideas. We study the discovery of spatiotemporal influence-based moving clusters in a database of spatiotemporal events. While the search space for discovering all spatiotemporal influence-based moving clusters is prohibitively huge, we design a method, STIMer, to efficiently retrieve the maximal answer. The algorithm STIMer adopts a top-down recursive refinement method to generate the maximal spatiotemporal influence-based moving clusters directly. Empirical studies on the real data as well as large synthetic data demonstrate the effectiveness and efficiency of our method.

References

[1]
D. Agarwal, A. McGregor, J. Phillips, S. Venky, and Z. Zhu. 2006. Spatial scan statistics: Approximations and performance study. In SIGKDD. 24--33.
[2]
H. Aung and K. Tan. 2012. Mining multi-object spatial-temporal movement patterns. SIGSPATIAL Special 4, 3 (Nov. 2012), 14--19.
[3]
D. Birant and A. Kut. 2007. ST-DBSCAN: An algorithm for clustering spatial-temporal data. Data Knowl. Eng. 60, 1 (2007), 208--221.
[4]
X. Caon, G. Cong, and C. Jensen. 2010. Mining significant semantic locations from GPS data. In VLDB. 320--332.
[5]
M. Celik, S. Shekar, J. Rogers, J. Shine, and J. Kang. 2008. Mining at most top-k mixed-drove spatio-temporal co-occurrence patterns: A summary of results. In SSTD. 187--192.
[6]
W. Chang, D. Zeng, and H. Chen. 2008. A spatio-temporal data analysis approach based on prospective support vector clustering. Decision Support Systems (2008).
[7]
W. Dong, X. Zhang, L. Li, C. Sun, L. Shi, and S. Wei. 2012. Detecting irregularly shaped significant spatial and spatio-temporal clusters. SDM. 732--743.
[8]
M. Ester, H. Kriegel, J. Sander, and X. Xu. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD. 226--231.
[9]
S. Gaffney and P. Smyth. 1999. Trajectory clustering with mixtures of regression models. In KDD. 63--72.
[10]
H. Gonzalez, J. Han, and X. Li. 2006. Mining compressed commodity workflows from massive RFID data sets. In IKM. 162--171.
[11]
J. Gudmundsson, M. van Kreveld, and B. Speckmann. 2004. Efficient detection of motion patterns in spatio-temporal data sets. In GIS. 20--25.
[12]
D. Guo, S. Liua, and H. Jina. 2010. A graph-based approach to vehicle trajectory analysis. In JLBS, 4. 183--199.
[13]
Y. Huang, L. Zhang, and P. Zhang. 2008. A framework for mining sequential patterns from spatio-temporal event data set. In TKDE. 433--448.
[14]
H. Jeung, M. Yiu, X. Zhou, C. Jensen, and H. Shen. 2008. Discovery of convoys in trajectory databases. In PVLDB. 1068--1080.
[15]
P. Kalnis, N. Mamoulis, and S. Bakiras. 2005. On discovering moving clusters in spatio-temporal data. In SSTD. 364--381.
[16]
M. Kreveld and J. Luo. 2007. The definition and computation of trajectory and subtrajectory similarity. In GIS. 1--4.
[17]
H.-P. Kriegel and M. Pfeifle. 2005. Clustering moving objects via medoid clusterings. In SSDBM. 153--162.
[18]
M. Kulldorff, W. Athas, E. Feuer, B. Miller, and C. Key. 1998. Evaluating cluster alarms: A space-time scan statistic and brain cancer in Los Alamos. In AJPH. 1377--1380.
[19]
J.-G. Lee, J. Han, and X. Li. 2008. Trajectory outlier detection: A partition-and-detect framework. In ICDE (2008), 140--149.
[20]
J.-G. Lee, J. Han, and K.-Y. Whang. 2007. Trajectory clustering: A partition-and-group framework. In SIGMOD. 10--22.
[21]
N. Levine. 2010. CrimeStat: A Spatial Statistics Program for the Analysis of Crime Incident Locations (v 3.3). Ned Levine and Associates, Houston, TX, and the National Institute of Justice, Washington, DC.
[22]
Y. Li, J. Han, and J. Yang. 2004. Clustering moving objects. In KDD. 617--622.
[23]
Z. Li, B. Ding, J. Han, and R. Kays. 2010. Swarm: Mining relaxed temporal moving object clusters. VLDB Endow. 3, 1--2 (2010), 723--734.
[24]
R. Maciejewski, R. Hafen, S. Rudolph, S. Larew, M. W. Cleveland, and D. Ebert. 2011. Forecasting hotspots: A predictive analytics approach. IEEE Trans. Visual. Comput. Graphics 17, 4 (2011), 440--453.
[25]
S. Mohammadi, V. Janeja, and A. Gangopadhyay. 2009. Discretized spatio-temporal scan window. In SIAM. 1195--1206.
[26]
P. Mohan, S. Shekhar, J. Shine, and J. Rogers. 2010. Cascading spatio-temporal pattern discovery: A summary of results. In SDM. 327--338.
[27]
A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti. 2009. WhereNext: A location predictor on trajectory pattern mining. In KDD. 10--20.
[28]
D. Neill, A. Moore, M. Sabhnani, and K. Daniel. 2005. Detection of emerging space-time clusters. In ACM SIGKDD. 218--227.
[29]
D. Patel, C. Sheng, W. Hsu, and M. Lee. 2012. Incorporating duration information for trajectory classification. In ICDE. 1132--1143.
[30]
T. Sakaki, M. Okazaki, and Y. Matsuo. 2008. Earthquake shakes twitter users: Real-time event detection by social sensors. In WWW. 697--713.
[31]
S. Shekhar and Y. Huang. 2001. Discovering spatial co-location patterns: A summary of results. In SSTD. 236--256.
[32]
M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, and R. Schult. 2006. MONIC: Modeling and monitoring cluster transitions. In KDD. 706--711.
[33]
L. Tang, Y. Zheng, J. Yuan, J. Han, A. Leung, W. Peng, and T. Porta. 2014. A framework of traveling companion discovery on trajectory data streams. ACM Trans. Intell. Syst. Technol. 5, 1 (Jan. 2014), 3:1--3:34.
[34]
M. Vieira, P. Bakalov, V. Tsotras, and J. Vassilis. 2009. On-line discovery of flock patterns in spatio-temporal data. In GIS. 286--295.
[35]
J. Wang, W. Hsu, M. L. Lee, and J. Wang. 2004. FlowMiner: Finding flow patterns in spatio-temporal databases. In ICTAI. 14--21.
[36]
R. Watkins, S. Eagleson, S. Beckett, G. Garner, B. Veenendaal, G. Wright, and A. Plant. 2007. Using GIS to create synthetic disease outbreaks. In BMC Medical Informatics and Decision Making.
[37]
L. Wie and M. Shan. 2006. Efficient mining of spatial co-orientation patterns from image databases. In SMC. 2982--2987.
[38]
D. Zeng, H. Chen, C. Chavez, W. Lober, and M. Thurmond. 2010. Infectious Disease Informatics and Biosurveillance. Springer (2010).
[39]
M. Zhang, W. Hsu, and M. L. Lee. 2007. Finding orientation-sensitive patterns in snapshot databases. In ICTAI. IEEE, 171--178.

Cited By

View all
  • (2023)Discovering Geographical Flock Patterns of CO2 Emissions in China Using Trajectory Mining TechniquesInternational Journal of Environmental Research and Public Health10.3390/ijerph2005426520:5(4265)Online publication date: 27-Feb-2023
  • (2021)Massively Parallel Discovery of Loosely Moving Congestion Patterns from Trajectory DataISPRS International Journal of Geo-Information10.3390/ijgi1011078710:11(787)Online publication date: 17-Nov-2021
  • (2016)Joint Structured Sparsity Regularized Multiview Dimension Reduction for Video-Based Facial Expression RecognitionACM Transactions on Intelligent Systems and Technology10.1145/29565568:2(1-21)Online publication date: 25-Oct-2016
  • Show More Cited By

Index Terms

  1. On Discovery of Spatiotemporal Influence-Based Moving Clusters

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Intelligent Systems and Technology
    ACM Transactions on Intelligent Systems and Technology  Volume 6, Issue 1
    April 2015
    255 pages
    ISSN:2157-6904
    EISSN:2157-6912
    DOI:10.1145/2745393
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 11 March 2015
    Accepted: 01 June 2014
    Revised: 01 June 2014
    Received: 01 April 2013
    Published in TIST Volume 6, Issue 1

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Spatiotemporal events
    2. spatiotemporal influence-based moving clusters

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)5
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 16 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Discovering Geographical Flock Patterns of CO2 Emissions in China Using Trajectory Mining TechniquesInternational Journal of Environmental Research and Public Health10.3390/ijerph2005426520:5(4265)Online publication date: 27-Feb-2023
    • (2021)Massively Parallel Discovery of Loosely Moving Congestion Patterns from Trajectory DataISPRS International Journal of Geo-Information10.3390/ijgi1011078710:11(787)Online publication date: 17-Nov-2021
    • (2016)Joint Structured Sparsity Regularized Multiview Dimension Reduction for Video-Based Facial Expression RecognitionACM Transactions on Intelligent Systems and Technology10.1145/29565568:2(1-21)Online publication date: 25-Oct-2016
    • (2016)Scalable Real-Time Flock Detection2016 IEEE Global Communications Conference (GLOBECOM)10.1109/GLOCOM.2016.7842241(1-7)Online publication date: Dec-2016

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media