Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2505515.2505758acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
research-article

Querying graphs with preferences

Published: 27 October 2013 Publication History

Abstract

This paper presents GuLP a graph query language that enables to declaratively express preferences. Preferences enable to order the answers to a query and can be stated in terms of nodes/edge attributes and complex paths. We present the formal syntax and semantics of GuLP and a polynomial time algorithm for evaluating GuLP expressions. We describe an implementation of GuLP in the GuLP-it system, which is available for download. We evaluate the GuLP-it system on real-world and synthetic data.

References

[1]
S. Amer-Yahia, I. Fundulaki, and L. Lakshmanan. Personalizing XML Search in Pimento. In ICDE, pages 906--915. IEEE, 2007.
[2]
R. Angles and C. Gutierrez. Survey of Graph Database Models. ACM Computing Surveys, 40(1):1--39, 2 2008.
[3]
P. Barceló, D. Figueira, and L. Libkin. Graph logics with rational relations and the generalized intersection problem. In LICS, pages 115--124, 2012.
[4]
P. Barceló, C. A. Hurtado, L. Libkin, and P. T. Wood. Expressive Languages for Path Queries over Graph-structured Data. In PODS, pages 3--14. ACM, 2010.
[5]
C. Bizer, T. Heath, and T. Berners-Lee. Linked Data -- The Story So Far. International Journal on Semantic Web and Information Systems, 5(3):1--22, 2009.
[6]
J. Chomicki. Querying with Intrinsic Preferences. In EDBT, LNCS, pages 34--51. Springer, 2002.
[7]
J. Chomicki. Preference Formulas in Relational Queries. ACM Transactions on Database Systems, 28(4):427--466, 2003.
[8]
C. Domshlak, E. Hullermeier, S. Kaci, and H. Prade. Preferences in AI: An overview. Artificial Intelligence, 175(7):1037--1052, 2011.
[9]
R. Fagin. Combining Fuzzy Information from Multiple Systems. Journal of Computer System Sciences, 58(1):83--99, 1999.
[10]
R. Fagin and E. L. Wimmers. Incorporating User Preferences in Multimedia Queries. In ICDT, LNCS, pages 247--261. Springer, 1997.
[11]
V. Fionda, C. Gutierrez, and G. Pirró. Semantic Navigation on the Web of Data: Specification of Routes, Web Fragments and Actions. In WWW, pages 281--290. ACM, 2012.
[12]
S. Flesca and S. Greco. Partially Ordered Regular Languages for Graph Queries. Journal of Computer System Sciences, 70(1):1--25, 2005.
[13]
G. Grahne, A. Thomo, and W. Wadge. Preferential Regular Path Queries. Fundamenta Informaticae, 89(2-3):259--288, 2008.
[14]
W. Kießling. Foundations of Peferences in Database Systems. In VLDB, pages 311--322, 2002.
[15]
W. Kiéling, B. Hafenrichter, S. Fischer, and S. Holland. Preference XPath: A Query Language for e-commerce. In Information Age Economy, pages 427--440, 2001.
[16]
G. Koutrika and Y. E. Ioannidis. Personalization of Queries in Database Systems. In ICDE, pages 597--608. IEEE, 2004.
[17]
J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A Navigational Language for RDF. Journal of Web Semantics, 8(4):255--270, 2010.
[18]
K. Stefanidis, M. Drosou, and E. Pitoura. Perk: Personalized Keyword Search in Relational Databases through Preferences. In EDBT, pages 585--596. ACM, 2010.
[19]
K. Stefanidis, G. Koutrika, and E. Pitoura. A survey on representation, composition and application of preferences in database systems. ACM Transactions on Database Systems, 36(3):1--45, 2011.
[20]
R. Torlone and P. Ciaccia. Management of User Preferences in Data Intensive Applications. In SEBD, pages 257--268, 2003.
[21]
M.-E. Vidal, L. Raschid, and J. Mestre. Challenges in Selecting Paths for Navigational Queries: Trade-Off of Benefit of Path versus Cost of Plan. In WebDB, pages 61--66, 2004.
[22]
P. T. Wood. Query Languages for Graph Databases. SIGMOD Record, 41(1):50--60, 2012.

Cited By

View all
  • (2021)Expressive top-k matching for conditional graph patternsNeural Computing and Applications10.1007/s00521-021-06590-734:17(14205-14221)Online publication date: 29-Oct-2021
  • (2020)Combining RDF and SPARQL with CP-theories to reason about preferences in a Linked Data settingSemantic Web10.3233/SW-18033911:3(391-419)Online publication date: 1-Jan-2020
  • (2020)Augmenting Node‐Link Diagrams with Topographic Attribute MapsComputer Graphics Forum10.1111/cgf.1398739:3(369-381)Online publication date: 18-Jul-2020
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
CIKM '13: Proceedings of the 22nd ACM international conference on Information & Knowledge Management
October 2013
2612 pages
ISBN:9781450322638
DOI:10.1145/2505515
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 October 2013

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. graph query languages
  2. preferences

Qualifiers

  • Research-article

Conference

CIKM'13
Sponsor:
CIKM'13: 22nd ACM International Conference on Information and Knowledge Management
October 27 - November 1, 2013
California, San Francisco, USA

Acceptance Rates

CIKM '13 Paper Acceptance Rate 143 of 848 submissions, 17%;
Overall Acceptance Rate 1,861 of 8,427 submissions, 22%

Upcoming Conference

CIKM '25

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)6
  • Downloads (Last 6 weeks)3
Reflects downloads up to 13 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2021)Expressive top-k matching for conditional graph patternsNeural Computing and Applications10.1007/s00521-021-06590-734:17(14205-14221)Online publication date: 29-Oct-2021
  • (2020)Combining RDF and SPARQL with CP-theories to reason about preferences in a Linked Data settingSemantic Web10.3233/SW-18033911:3(391-419)Online publication date: 1-Jan-2020
  • (2020)Augmenting Node‐Link Diagrams with Topographic Attribute MapsComputer Graphics Forum10.1111/cgf.1398739:3(369-381)Online publication date: 18-Jul-2020
  • (2020)Refining Node Embeddings via Semantic ProximityThe Semantic Web – ISWC 202010.1007/978-3-030-62419-4_5(74-91)Online publication date: 2-Nov-2020
  • (2019)Querying knowledge graphs with extended property pathsSemantic Web10.3233/SW-19036510:6(1127-1168)Online publication date: 1-Jan-2019
  • (2017)Marrying uncertainty and time in knowledge graphsProceedings of the Thirty-First AAAI Conference on Artificial Intelligence10.5555/3298239.3298254(88-94)Online publication date: 4-Feb-2017
  • (2017)Quality Awareness over Graph Pattern QueriesProceedings of the 21st International Database Engineering & Applications Symposium10.1145/3105831.3105871(90-97)Online publication date: 12-Jul-2017
  • (2017)A Multi-layer Representation Model for the ISO/IEC 33000 Assessment Framework: Analysing Composition and BehaviourSoftware Process Improvement and Capability Determination10.1007/978-3-319-67383-7_12(156-169)Online publication date: 9-Sep-2017
  • (2016)On the Application of Answer Set Programming to the Conference Paper Assignment ProblemAI*IA 2016 Advances in Artificial Intelligence10.1007/978-3-319-49130-1_13(164-178)Online publication date: 29-Nov-2016
  • (2016)Answer Set Enumeration via Assumption LiteralsAI*IA 2016 Advances in Artificial Intelligence10.1007/978-3-319-49130-1_12(149-163)Online publication date: 29-Nov-2016
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media