Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2503713.2503714acmconferencesArticle/Chapter ViewAbstractPublication PagesvrstConference Proceedingsconference-collections
research-article

Drilling into complex 3D models with gimlenses

Published: 06 October 2013 Publication History

Abstract

Complex 3D virtual scenes such as CAD models of airplanes and representations of the human body are notoriously hard to visualize. Those models are made of many parts, pieces and layers of varying size, that partially occlude or even fully surround one another. We introduce Gimlenses, a multi-view, detail-in-context visualization technique that enables users to navigate complex 3D models by interactively drilling holes into their outer layers to reveal objects that are buried, possibly deep, into the scene. Those holes get constantly adjusted so as to guarantee the visibility of objects of interest from the parent view. Gimlenses can be cascaded and constrained with respect to one another, providing synchronized, complementary viewpoints on the scene. Gimlenses enable users to quickly identify elements of interest, get detailed views of those elements, relate them, and put them in a broader spatial context.

Supplementary Material

JPG File (p223-pindat.jpg)
MP4 File (p223-pindat.mp4)

References

[1]
Appert, C., Chapuis, O., and Pietriga, E. 2010. High-precision magnification lenses. In Proc. CHI '10, ACM, 273--282.
[2]
Bane, R., and Hollerer, T. 2004. Interactive tools for virtual x-ray vision in mobile augmented reality. In Proc. ISMAR '04, ACM IEEE, 231--239.
[3]
Bier, E. A., Stone, M. C., Pier, K., Buxton, W., and DeRose, T. D. 1993. Toolglass and magic lenses: the see-through interface. In Proc. SIGGRAPH '93, ACM, 7380.
[4]
Bruckner, S., Grimm, S., Kanitsar, A., and Gröller, M. E. 2005. Illustrative context-preserving volume rendering. In Proc. EUROVIS'05, Eurographics Association, 69--76.
[5]
Burns, M., and Finkelstein, A. 2008. Adaptive cutaways for comprehensible rendering of polygonal scenes. ACM Transactions on Graphics 27, 5, 154:1--154:7.
[6]
Burtnyk, N., Khan, A., Fitzmaurice, G., Balakrishnan, R., and Kurtenbach, G. 2002. Stylecam: interactive stylized 3d navigation using integrated spatial & temporal controls. In Proc. UIST '02, ACM, 101--110.
[7]
Carpendale, M. S. T., and Montagnese, C. 2001. A framework for unifying presentation space. In Proc. UIST '01, ACM, 61--70.
[8]
Carpendale, M. S. T., Cowperthwaite, D. J., and Fracchia, F. D. 1997. Extending distortion viewing from 2D to 3D. IEEE Comput. Graph. Appl. 17, 4 (July), 42--51.
[9]
Cockburn, A., Karlson, A., and Bederson, B. B. 2008. A review of overview+detail, zooming, and focus+context interfaces. ACM Computing Surveys 41, 1 (Dec.), 131.
[10]
Coffin, C., and Hollerer, T. 2006. Interactive perspective cut-away views for general 3d scenes. In Proc. 3DUI '06, IEEE, 25--28.
[11]
Correa, C., and Ma, K.-L. 2009. The occlusion spectrum for volume classification and visualization. IEEE Transactions on Visualization and Computer Graphics 15, 6, 1465--1472.
[12]
Correa, C. D., and Ma, K.-L. 2011. Visibility histograms and visibility-driven transfer functions. IEEE Transactions on Visualization and Computer Graphics 17, 192--204.
[13]
Cruz-Neira, C., Sandin, D. J., DeFanti, T. A., Kenyon, R. V., and Hart, J. C. 1992. The cave: audio visual experience automatic virtual environment. Communications of the ACM 35, 6 (June), 64--72.
[14]
Dietrich, A., Stephens, A., and Wald, I. 2007. Exploring a boeing 777: Ray tracing large-scale cad data. IEEE Computer Graphics and Applications 27, 6, 36--46.
[15]
Elmqvist, N., and Tsigas, P. 2008. A taxonomy of 3D occlusion management for visualization. IEEE Transactions on Visualization and Computer Graphics 14, 5.
[16]
Feiner, S. K., and Seligmann, D. D. 1992. Cutaways and ghosting: satisfying visibility constraints in dynamic 3D illustrations. The Visual Computer 8, 5-6 (Sept.), 292--302.
[17]
Hachet, M., Decle, F., Knodel, S., and Guitton, P. 2008. Navidget for easy 3D camera positioning from 2D inputs. In Proc. 3DUI '08, IEEE, 83--89.
[18]
Javed, W., Ghani, S., and Elmqvist, N. 2012. Polyzoom: multiscale and multifocus exploration in 2d visual spaces. In Proc. CHI '12, ACM, 287--296.
[19]
Khan, A., Komalo, B., Stam, J., Fitzmaurice, G., and Kurtenbach, G. 2005. HoverCam: interactive 3D navigation for proximal object inspection. In Proc. I3D '05, ACM, 73--80.
[20]
Kruger, J., Schneider, J., and Westermann, R. 2006. Clearview: An interactive context preserving hotspot visualization technique. IEEE Transactions on Visualization and Computer Graphics 12, 5, 941--948.
[21]
Li, W., Ritter, L., Agrawala, M., Curless, B., and Salesin, D. 2007. Interactive cutaway illustrations of complex 3D models. ACM Transactions on Graphics 26, 3, 31:1--31:12.
[22]
Li, W., Agrawala, M., Curless, B., and Salesin, D. 2008. Automated generation of interactive 3D exploded view diagrams. ACM Transactions on Graphics 27, 3, 101:1--101:7.
[23]
Looser, J., Billinghurst, M., and Cockburn, A. 2004. Through the looking glass: the use of lenses as an interface tool for augmented reality interfaces. In Proc. GRAPHITE '04, ACM, 204--211.
[24]
McCrae, J., Mordatch, I., Glueck, M., and Khan, A. 2009. Multiscale 3D navigation. In Proc. I3D '09, ACM, 7--14.
[25]
McGuffin, M. J., Tancau, L., and Balakrishnan, R. 2003. Using deformations for browsing volumetric data. In Proc. VIS '03, IEEE, 401--409.
[26]
Nancel, M., Wagner, J., Pietriga, E., Chapuis, O., and Mackay, W. 2011. Mid-air pan-and-zoom on wall-sized displays. In Proc. CHI '11, ACM, 177--186.
[27]
Pietriga, E., Bau, O., and Appert, C. 2010. Representation-independent in-place magnification with sigma lenses. IEEE Transactions on Visualization and Computer Graphics 16, 03, 455--467.
[28]
Pindat, C., Pietriga, E., Chapuis, O., and Puech, C. 2012. Jellylens: content-aware adaptive lenses. In Proc. UIST '12, ACM, 261--270.
[29]
Plumlee, M., and Ware, C. 2003. Integrating multiple 3d views through frame-of-reference interaction. In Proc. CMV '03, IEEE, 34--43.
[30]
Plumlee, M. D., and Ware, C. 2006. Zooming versus multiple window interfaces: Cognitive costs of visual comparisons. ACM Transactions on Computer-Human Interaction 13, 2 (jun), 179--209.
[31]
Ropinski, T., and Hinrichs, K. 2004. Real-time rendering of 3D magic lenses having arbitrary convex shapes. In Journal of the International Winter School of Computer Graphics (WSCG04), Science Press, 379--386.
[32]
Tan, D. S., Robertson, G. G., and Czerwinski, M. 2001. Exploring 3D navigation: combining speed-coupled flying with orbiting. In Proc. CHI '01, ACM, 418425.
[33]
Viega, J., Conway, M. J., Williams, G., and Pausch, R. 1996. 3D magic lenses. In Proc. UIST '96, ACM, 5158.
[34]
Viola, I., and Gröller, M. E. 2005. Smart visibility in visualization. In Proc. Computational Aesthetics'05, Eurographics Association, 209--216.
[35]
Viola, I., Kanitsar, A., Grller, M. E., and Groller, M. E. 2005. Importance-driven feature enhancement in volume visualization. IEEE Transactions on Visualization and Computer Graphics 11, 4, 40818.
[36]
Wang, L., Zhao, Y., Mueller, K., and Kaufman, A. 2005. The magic volume lens: An interactive focus+context technique for volume rendering. In Proc. VIS '05, IEEE, 367--374.
[37]
Wang, Y.-S., Wang, C., Lee, T.-Y., and Ma, K.-L. 2011. Feature-preserving volume data reduction and Focus+Context visualization. IEEE Transactions on Visualization and Computer Graphics 17, 2 (Feb.), 171--181.
[38]
Ware, C., Lewis, M., and Creativity, O. F. 1995. The Drag-Mag image magnifier. In Proc. CHI '95 EA, ACM, 407--408.

Cited By

View all
  • (2022)Conductor: Intersection-Based Bimanual Pointing in Augmented and Virtual RealityProceedings of the ACM on Human-Computer Interaction10.1145/35677136:ISS(103-117)Online publication date: 14-Nov-2022
  • (2022)Activation modes for gesture-based interaction with a magic lens in AR anatomy visualisationComputer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization10.1080/21681163.2022.215774911:4(1243-1250)Online publication date: 21-Dec-2022
  • (2021)A Lens-Based Extension of Raycasting for Accurate Selection in Dense 3D EnvironmentsHuman-Computer Interaction – INTERACT 202110.1007/978-3-030-85610-6_28(501-524)Online publication date: 26-Aug-2021
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
VRST '13: Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology
October 2013
271 pages
ISBN:9781450323796
DOI:10.1145/2503713
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 06 October 2013

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. detail-in-context
  2. lenses
  3. multi-scale visualization

Qualifiers

  • Research-article

Conference

VRST'13

Acceptance Rates

Overall Acceptance Rate 66 of 254 submissions, 26%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)11
  • Downloads (Last 6 weeks)1
Reflects downloads up to 13 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Conductor: Intersection-Based Bimanual Pointing in Augmented and Virtual RealityProceedings of the ACM on Human-Computer Interaction10.1145/35677136:ISS(103-117)Online publication date: 14-Nov-2022
  • (2022)Activation modes for gesture-based interaction with a magic lens in AR anatomy visualisationComputer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization10.1080/21681163.2022.215774911:4(1243-1250)Online publication date: 21-Dec-2022
  • (2021)A Lens-Based Extension of Raycasting for Accurate Selection in Dense 3D EnvironmentsHuman-Computer Interaction – INTERACT 202110.1007/978-3-030-85610-6_28(501-524)Online publication date: 26-Aug-2021
  • (2021)Global Scene Filtering, Exploration, and Pointing in Occluded Virtual SpaceHuman-Computer Interaction – INTERACT 202110.1007/978-3-030-85607-6_11(156-176)Online publication date: 27-Aug-2021
  • (2020)A Systematic Review of Visualization in Building Information ModelingIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2019.290758326:10(3109-3127)Online publication date: 1-Oct-2020
  • (2017)Interactive Lenses for VisualizationComputer Graphics Forum10.1111/cgf.1287136:6(173-200)Online publication date: 1-Sep-2017
  • (2016)Occlusion-free Blood Flow Animation with Wall Thickness VisualizationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2015.246796122:1(728-737)Online publication date: 31-Jan-2016
  • (2015)Aperio: A System for Visualizing 3D Anatomy Data Using Virtual Mechanical ToolsAdvances in Visual Computing10.1007/978-3-319-27857-5_71(797-808)Online publication date: 18-Dec-2015
  • (2014)Color TunnelingProceedings of the 2014 IEEE Pacific Visualization Symposium10.1109/PacificVis.2014.61(225-232)Online publication date: 4-Mar-2014

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media