Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2463676.2463708acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Enhancements to SQL server column stores

Published: 22 June 2013 Publication History

Abstract

SQL Server 2012 introduced two innovations targeted for data warehousing workloads: column store indexes and batch (vectorized) processing mode. Together they greatly improve performance of typical data warehouse queries, routinely by 10X and in some cases by a 100X or more. The main limitations of the initial version are addressed in the upcoming release. Column store indexes are updatable and can be used as the base storage for a table. The repertoire of batch mode operators has been expanded, existing operators have been improved, and query optimization has been enhanced. This paper gives an overview of SQL Server's column stores and batch processing, in particular the enhancements introduced in the upcoming release.

References

[1]
Batory, D. S.: On searching transposed files. ACM Trans. Database Syst. 4, 4 (1979), 531--544.
[2]
P. A. Boncz, M. Zukowski, and N.Nes, MonetDB/X100: Hyper-pipelining query execution. CIDR, 2005, 225--237.
[3]
G. P. Copeland and S. Khoshafian, A decomposition storage model. SIGMOD, 1985, 268--279.
[4]
Harizopoulos, S., Liang, V., Abadi, D.J., and Madden, S.: Performance tradeoffs in read-optimized databases. VLDB, 2006, 487--498.
[5]
Sándor Héman, Marcin Zukowski, Niels J. Nes, Lefteris Sidirourgos, Peter A. Boncz: Positional update handling in column stores. SIGMOD, 2010: 543--554.
[6]
J. A. Hoffer and D. G. Severance, The use of cluster analysis in physical data base design, VLDB, 1975, 69--86.
[7]
M. Holsheimer and M. L. Kersten, Architectural support for data mining, KDD, 1994, 217--228.
[8]
D. Inkster, M. Zukowski, and P. A. Boncz, Integration of VectorWise with Ingres, SIGMOD Record, 40(3):45--53, 2011.
[9]
P.-Å. Larson, C. Clinciu, E. N. Hanson, A. Oks, S. L. Price, S. Rangarajan, A. Surna, and Q. Zhou, Sql Server column store indexes, SIGMOD, 2011, 1177--1184.
[10]
Microsoft, Column store Indexes in Books Online for SQL Server 2012, available at http://msdn.microsoft.com/en-us/library/gg492088.aspx.
[11]
Microsoft, SQL Server Column store Index FAQ, http://social.technet.microsoft.com/wiki/contents/articles/3540.sql-server-column store-index-faq-en-us.aspx.
[12]
M. Stonebraker et al. C-Store: A Column-oriented DBMS. VLDB, 2005, 553--564.
[13]
TPC Benchmark DS (Decision Support), Draft Specification, Version 32, http://tpc.org/tpcds.
[14]
ExaSolution, http://www.exasol.com
[15]
Greenplum Database, http://www.greenplum.com
[16]
InfoBright, http://www.infobright.com
[17]
Actian VectorWise, http://www.actian.com/products/vectorwise.
[18]
MonetDB, http://monetdb.cwi.nl
[19]
ParAccel Analytic Database, http://paraccel.com
[20]
SAND CDBMS, http://www.sand.com
[21]
Sybase IQ Columnar database, http://www.sybase.com/products/datawarehousing/sybaseiq
[22]
Teradata Columnar, http://www.teradata.com/products-and-services/database/teradata-14
[23]
Vertica, http://www.vertica.com

Cited By

View all
  • (2024)Dynamic Data Layout Optimization with Worst-Case Guarantees2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00327(4288-4301)Online publication date: 13-May-2024
  • (2023)Analyzing the Impact of Cardinality Estimation on Execution Plans in Microsoft SQL ServerProceedings of the VLDB Endowment10.14778/3611479.361149416:11(2871-2883)Online publication date: 24-Aug-2023
  • (2023)Pando: Enhanced Data Skipping with Logical Data PartitioningProceedings of the VLDB Endowment10.14778/3598581.359860116:9(2316-2329)Online publication date: 1-May-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGMOD '13: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data
June 2013
1322 pages
ISBN:9781450320375
DOI:10.1145/2463676
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 22 June 2013

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. column store
  2. columnar storage
  3. data warehousing
  4. index
  5. olap

Qualifiers

  • Research-article

Conference

SIGMOD/PODS'13
Sponsor:

Acceptance Rates

SIGMOD '13 Paper Acceptance Rate 76 of 372 submissions, 20%;
Overall Acceptance Rate 785 of 4,003 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)62
  • Downloads (Last 6 weeks)3
Reflects downloads up to 23 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Dynamic Data Layout Optimization with Worst-Case Guarantees2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00327(4288-4301)Online publication date: 13-May-2024
  • (2023)Analyzing the Impact of Cardinality Estimation on Execution Plans in Microsoft SQL ServerProceedings of the VLDB Endowment10.14778/3611479.361149416:11(2871-2883)Online publication date: 24-Aug-2023
  • (2023)Pando: Enhanced Data Skipping with Logical Data PartitioningProceedings of the VLDB Endowment10.14778/3598581.359860116:9(2316-2329)Online publication date: 1-May-2023
  • (2023)BtrBlocks: Efficient Columnar Compression for Data LakesProceedings of the ACM on Management of Data10.1145/35892631:2(1-26)Online publication date: 20-Jun-2023
  • (2022)Proteus: Autonomous Adaptive Storage for Mixed WorkloadsProceedings of the 2022 International Conference on Management of Data10.1145/3514221.3517834(700-714)Online publication date: 10-Jun-2022
  • (2022)PAW: Data Partitioning Meets Workload Variance2022 IEEE 38th International Conference on Data Engineering (ICDE)10.1109/ICDE53745.2022.00014(123-135)Online publication date: May-2022
  • (2021)Optimistically Compressed Hash Tables & Strings in theUSSRACM SIGMOD Record10.1145/3471485.347150050:1(60-67)Online publication date: 17-Jun-2021
  • (2021)Instance-Optimized Data Layouts for Cloud Analytics WorkloadsProceedings of the 2021 International Conference on Management of Data10.1145/3448016.3457270(418-431)Online publication date: 9-Jun-2021
  • (2021)LDI: Learned Distribution Index for Column Stores2021 IEEE International Conference on Big Data (Big Data)10.1109/BigData52589.2021.9671318(376-387)Online publication date: 15-Dec-2021
  • (2020)Qd-tree: Learning Data Layouts for Big Data AnalyticsProceedings of the 2020 ACM SIGMOD International Conference on Management of Data10.1145/3318464.3389770(193-208)Online publication date: 11-Jun-2020
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media