Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2460625.2460682acmconferencesArticle/Chapter ViewAbstractPublication PagesteiConference Proceedingsconference-collections
research-article

HideOut: mobile projector interaction with tangible objects and surfaces

Published: 10 February 2013 Publication History

Abstract

HideOut is a mobile projector-based system that enables new applications and interaction techniques with tangible objects and surfaces. HideOut uses a device mounted camera to detect hidden markers applied with infrared-absorbing ink. The obtrusive appearance of fiducial markers is avoided and the hidden marker surface doubles as a functional projection surface. We present example applications that demonstrate a wide range of interaction scenarios, including media navigation tools, interactive storytelling applications, and mobile games. We explore the design space enabled by the HideOut system and describe the hidden marker prototyping process. HideOut brings tangible objects to life for interaction with the physical world around us.

References

[1]
Audet, S., and Okutomi, M. A user-friendly method to geometrically calibrate projector-camera systems. In Proc. IEEE Procams (2009), 47--54.
[2]
Bandyopadhyay, D., Raskar, R., and Fuchs, H. Dynamic shader lamps: Painting on movable objects. In Proc. IEEE ISAR (2001), 207--216.
[3]
Bimber, O., and Raskar, R. Spatial Augmented Reality: Merging Real and Virtual Worlds. A K Peters, 2005.
[4]
Cao, X., and Balakrishnan, R. Interacting with dynamically defined information spaces using a handheld projector and a pen. In Proc. ACM UIST (2006), 225--234.
[5]
Cao, X., Forlines, C., and Balakrishnan, R. Multi-user interaction using handheld projectors. In Proc. ACM UIST (2007), 43--52.
[6]
Cowan, L. G., and Li, K. A. Shadowpuppets: Supporting collocated interaction with mobile projector phones using hand shadows. In CHI '11, ACM (2011), 2707--2716.
[7]
Harrison, C., Benko, H., and Wilson, A. D. OmniTouch: Wearable multitouch interaction everywhere. In Proc. ACM UIST (2011), 441--450.
[8]
Hartley, R. I., and Zisserman, A. Multiple View Geometry in Computer Vision. Cambridge University Press, 2004.
[9]
Huber, J., Steiml, J., Liao, C., Li, Q., and Mühlhäuser, M. Lightbeam: Nomadic pico projector interaction with real world objects. In Proc. ACM CHI '12 (2012).
[10]
Hyakutake, A., Ozaki, K., Kitani, K. M., and Koike, H. 3-D interaction with a large wall display using transparent markers. In Proc. ACM AVI (2010), 97--100.
[11]
Izadi, S., Hodges, S., Taylor, S., Rosenfeld, D., Villar, N., Butler, A., and Westhues, J. Going beyond the display: A surface technology with an electronically switchable diffuser. In Proc. ACM UIST (2008), 269--278.
[12]
Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., and Fitzgibbon, A. KinectFusion: Real-time 3D reconstruction and interaction using a moving depth camera. In Proc. ACM UIST (2011), 559--568.
[13]
Jacob, R. J., Girouard, A., Hirshfield, L. M., Horn, M. S., Shaer, O., Solovey, E. T., and Zigelbaum, J. Reality-based interaction: A framework for post-WIMP interfaces. In Proc. ACM CHI (2008), 201--210.
[14]
Kane, S. K., Avrahami, D., Wobbrock, J. O., Harrison, B., Rea, A. D., Philipose, M., and LaMarca, A. Bonfire: A nomadic system for hybrid laptop-tabletop interaction. In Proc. ACM UIST (2009), 129--138.
[15]
Koike, H., Nishikawa, W., and Fukuchi, K. Transparent 2-D markers on an LCD tabletop system. In Proc. ACM CHI (2009), 163--172.
[16]
Lee, J. C., Hudson, S. E., Summet, J. W., and Dietz, P. H. Moveable interactive projected displays using projector based tracking. In Proc. ACM UIST (2005), 63--72.
[17]
Lee, J. C., Hudson, S. E., and Tse, E. Foldable interactive displays. In Proc. ACM UIST, UIST '08 (2008), 287--290.
[18]
Lee, J.-E., Miyashita, S., Azuma, K., Lee, J.-H., and Park, G.-T. Anamorphosis projection by ubiquitous display in intelligent space. In Proc. UAHCI (2009), 209--217.
[19]
Markets and Markets. Pico projector by application, technology & products market, 2010. http://www.marketsandmarkets.com/Market-Reports/pico-projector-market-196.html.
[20]
Mistry, P., Maes, P., and Chang, L. Wuw - wear ur world - a wearable gestural interface. In Ext. Abstracts ACM CHI '09 (2009), 4111--4116.
[21]
Molyneaux, D., Izadi, S., Kim, D., Hilliges, O., Hodges, S., Cao, X., Butler, A., and Gellersen, H. Interactive environment-aware handheld projectors for pervasive computing spaces. In Proc. Pervasive (2012).
[22]
Nakazato, Y., Kanbara, M., and Yokoya, N. Localization system for large indoor environments using invisible markers. In Proc. ACM VRST (2008), 295--296.
[23]
Nam, T. Sketch-based rapid prototyping platform for hardware-software integrated interactive products. In Proc. ACM CHI Ext. Abstracts (2005), 1689--1692.
[24]
Ni, T., Karlson, A. K., and Wigdor, D. AnatOnMe: facilitating doctor-patient communication using a projection-based handheld device. In Proc. ACM CHI (2011), 3333--3342.
[25]
Park, H., and Park, J.-I. Invisible marker tracking for AR. In Proc. IEEE/ACM ISMAR (2004), 272--273.
[26]
Park, H., and Park, J.-I. Invisible marker based augmented reality system. In Proc. SPIE VCIP, vol. 5960 (2005), 501--508.
[27]
Park, H., and Park, J.-I. Invisible marker-based augmented reality. International Journal of Human-Computer Interaction 26, 9 (2010), 829--848.
[28]
Pinhanez, C. S. The everywhere displays projector: A device to create ubiquitous graphical interfaces. In Proc. ACM UbiComp (2001), 315--331.
[29]
Rapp, S., Michelitsch, G., Osen, M., Williams, J., Barbisch, M., Bohan, R., Valsan, Z., and Emele, M. Spotlight navigation: Interaction with a handheld projection device. In Proc. Pervasive, video paper (2004).
[30]
Raskar, R., Beardsley, P., van Baar, J., Wang, Y., Dietz, P., Lee, J., Leigh, D., and Willwacher, T. RFIG lamps: Interacting with a self-describing world via photosensing wireless tags and projectors. ACM Trans. on Graphics 23, 3 (2004), 406--415.
[31]
Raskar, R., Welch, G., Low, K.-L., and Bandyopadhyay, D. Shader lamps: Animating real objects with image-based illumination. In Proc. Eurographics Workshop on Rendering Techniques (2001), 89--102.
[32]
Rekimoto, J., and Saitoh, M. Augmented surfaces: A spatially continuous work space for hybrid computing environments. In Proc. ACM CHI (1999), 378--385.
[33]
Rosner, D. K., and Ryokai, K. Spyn: Augmenting knitting to support storytelling and reflection. In Proc. ACM UbiComp (2008), 340--349.
[34]
Song, H., Guimbretiere, F., Grossman, T., and Fitzmaurice, G. MouseLight: Bimanual interactions on digital paper using a pen and a spatially-aware mobile projector. In Proc. ACM CHI (2010), 2451--2460.
[35]
Spindler, M., Tominski, C., Schumann, H., and Dachselt, R. Tangible views for information visualization. In Proc. ACM ITS (2010), 157--166.
[36]
Willis, K. D., Poupyrev, I., Hudson, S. E., and Mahler, M. SideBySide: Ad-hoc multi-user interaction with handheld projectors. In Proc. ACM UIST (2011), 431--440.
[37]
Willis, K. D., Poupyrev, I., and Shiratori, T. Motion-Beam: A metaphor for character interaction with handheld projectors. In Proc. ACM CHI (2011), 1031--1040.
[38]
Wilson, A. D. PlayAnywhere: A compact interactive tabletop projection-vision system. In Proc. ACM UIST (2005), 83--92.
[39]
Wilson, A. D., and Benko, H. Combining multiple depth cameras and projectors for interactions on, above and between surfaces. In Proc. ACM UIST (2010), 273--282.
[40]
Yoshida, T., Hirobe, Y., Nii, H., Kawakami, N., and Tachi, S. Twinkle: Interacting with physical surfaces using handheld projector. In Proc. IEEE VR (2010), 87--90.

Cited By

View all
  • (2024)LuxAR: A Direct Manipulation Projected Display to Extend and Augment Desktop ComputingProceedings of the 50th Graphics Interface Conference10.1145/3670947.3670981(1-12)Online publication date: 3-Jun-2024
  • (2024)Chic-Marker: Fashionably Fusing Fiducial Markers into Apparel and AccessoriesProceedings of the 9th ACM Symposium on Computational Fabrication10.1145/3639473.3665790(1-15)Online publication date: 7-Jul-2024
  • (2024)VisTorch: Interacting with Situated Visualizations using Handheld ProjectorsProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3642857(1-13)Online publication date: 11-May-2024
  • Show More Cited By

Index Terms

  1. HideOut: mobile projector interaction with tangible objects and surfaces

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    TEI '13: Proceedings of the 7th International Conference on Tangible, Embedded and Embodied Interaction
    February 2013
    439 pages
    ISBN:9781450318983
    DOI:10.1145/2460625
    • Conference Chairs:
    • Sergi Jordà,
    • Narcis Parés
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 10 February 2013

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. hidden
    2. infrared
    3. ink
    4. interaction
    5. marker
    6. mobile
    7. projector
    8. tangible

    Qualifiers

    • Research-article

    Conference

    TEI'13
    Sponsor:

    Acceptance Rates

    TEI '13 Paper Acceptance Rate 48 of 136 submissions, 35%;
    Overall Acceptance Rate 393 of 1,367 submissions, 29%

    Upcoming Conference

    TEI '25

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)77
    • Downloads (Last 6 weeks)13
    Reflects downloads up to 01 Oct 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)LuxAR: A Direct Manipulation Projected Display to Extend and Augment Desktop ComputingProceedings of the 50th Graphics Interface Conference10.1145/3670947.3670981(1-12)Online publication date: 3-Jun-2024
    • (2024)Chic-Marker: Fashionably Fusing Fiducial Markers into Apparel and AccessoriesProceedings of the 9th ACM Symposium on Computational Fabrication10.1145/3639473.3665790(1-15)Online publication date: 7-Jul-2024
    • (2024)VisTorch: Interacting with Situated Visualizations using Handheld ProjectorsProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3642857(1-13)Online publication date: 11-May-2024
    • (2024)Shadow Shooter: All-Around Game with e-Yumi 3DEncyclopedia of Computer Graphics and Games10.1007/978-3-031-23161-2_63(1634-1637)Online publication date: 5-Jan-2024
    • (2023)BrightMarker: 3D Printed Fluorescent Markers for Object TrackingProceedings of the 36th Annual ACM Symposium on User Interface Software and Technology10.1145/3586183.3606758(1-13)Online publication date: 29-Oct-2023
    • (2023)StandARone: Infrared-Watermarked Documents as Portable Containers of AR Interaction and PersonalizationExtended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544549.3585905(1-7)Online publication date: 19-Apr-2023
    • (2022)Evaluation of Perceptual Difference in Dynamic Projection Mapping with and without Movement of the Target SurfaceJournal of Robotics and Mechatronics10.20965/jrm.2022.p114134:5(1141-1151)Online publication date: 20-Oct-2022
    • (2022)OmniLantern: Design and Implementations of a Portable and Coaxial Omnidirectional Projector-Camera SystemProceedings of the 2022 International Conference on Advanced Visual Interfaces10.1145/3531073.3531126(1-5)Online publication date: 6-Jun-2022
    • (2022)InfraredTags: Embedding Invisible AR Markers and Barcodes Using Low-Cost, Infrared-Based 3D Printing and Imaging ToolsProceedings of the 2022 CHI Conference on Human Factors in Computing Systems10.1145/3491102.3501951(1-12)Online publication date: 29-Apr-2022
    • (2022)ClipWidgets: 3D-printed Modular Tangible UI Extensions for SmartphonesProceedings of the Sixteenth International Conference on Tangible, Embedded, and Embodied Interaction10.1145/3490149.3501314(1-11)Online publication date: 13-Feb-2022
    • Show More Cited By

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media