Nothing Special   »   [go: up one dir, main page]

skip to main content
column

Querying Semantic Data on the Web?

Published: 17 January 2013 Publication History
First page of PDF

References

[1]
S. Abiteboul and V. Vianu. Queries and computation on the Web. Theor. Comput. Sci., 239(2):231--255, 2000.
[2]
F. Alkhateeb, J.-F. Baget, and J. Euzenat. Constrained regular expressions in SPARQL. In SWWS, pages 91--99, 2008.
[3]
F. Alkhateeb, J.-F. Baget, and J. Euzenat. Extending SPARQL with regular expression patterns (for querying RDF). J. Web Sem., 7(2):57--73, 2009.
[4]
R. Angles and C. Gutierrez. SQL nested queries in SPARQL. In AMW, 2010.
[5]
R. Angles and C. Gutierrez. Subqueries in SPARQL. In AMW, 2011.
[6]
K. Anyanwu, A. Maduko, and A. P. Sheth. Sparq2l: towards support for subgraph extraction queries in rdf databases. In WWW, pages 797--806, 2007.
[7]
M. Arenas, A. Bertails, E. Prud'hommeaux, and J. F. Sequeda. A direct mapping of relational data to RDF. W3C Recommendation 27 September 2012, http://www.w3.org/TR/rdb-direct-mapping/.
[8]
M. Arenas, S. Conca, and J. Pérez. Counting beyond a yottabyte, or how SPARQL 1.1 property paths will prevent adoption of the standard. In WWW, pages 629--638, 2012.
[9]
T. Berners-Lee. Principles of design. http://www.w3.org/DesignIssues/Principles.html.
[10]
T. Berners-Lee, R. Fielding, and L. Masinter. Uniform resource identifier (URI): Generic syntax. http://www.ietf.org/rfc/rfc3986.txt, 2005.
[11]
C. Buil-Aranda, M. Arenas, and O. Corcho. Semantics and optimization of the SPARQL 1.1 federation extension. In ESWC, 2011.
[12]
C. Buil-Aranda, M. Arenas, O. Corcho, and A. Polleres. Federating queries in SPARQL 1.1: Syntax, semantics and evaluation. Submitted for journal publication.
[13]
S. Das, S. Sundara, and R. Cyganiak. R2rml: Rdb to RDF mapping language. W3C Recommendation 27 September 2012, http://www.w3.org/TR/r2rml/.
[14]
V. Fionda, C. Gutierrez, and G. Pirró. Semantic navigation on the web of data: specification of routes, web fragments and actions. In WWW, pages 281--290, 2012.
[15]
T. Furche, B. Linse, F. Bry, D. Plexousakis, and G. Gottlob. RDF querying: Language constructs and evaluation methods compared. In Reasoning Web, pages 1--52, 2006.
[16]
M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.
[17]
B. Glimm and C. Ogbuji. SPARQL 1.1 entailment regimes. W3C Working Draft 05 January 2012, http://www.w3.org/TR/sparql11-entailment/.
[18]
S. Harris and A. Seaborne. SPARQL 1.1 query language. W3C working draft. http://www.w3.org/TR/sparql11-query/, July 2012.
[19]
A. Harth, K. Hose, M. Karnstedt, A. Polleres, K.-U. Sattler, and J. Umbrich. Data summaries for on-demand queries over linked data. In WWW, pages 411--420, 2010.
[20]
A. Harth and S. Speiser. On completeness classes for query evaluation on linked data. In AAAI, pages 613--619, 2012.
[21]
O. Hartig. Provenance information in the web of data. In LDOW, 2009.
[22]
O. Hartig. Querying trust in RDF data with tSPARQL. In ESWC, pages 5--20, 2009.
[23]
O. Hartig. SPARQL for a web of linked data: Semantics and computability. In ESWC, pages 8--23, 2012.
[24]
O. Hartig, C. Bizer, and J. C. Freytag. Executing SPARQL queries over the web of linked data. In ISWC, pages 293--309, 2009.
[25]
O. Hartig and J.-C. Freytag. Foundations of traversal based query execution over linked data. In HT, pages 43--52, 2012.
[26]
P. Hayes. RDF semantics, W3C recommendation, February 2004.
[27]
T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global Data Space. Morgan & Claypool Publishers, 2011.
[28]
P. Hitzler, M. Krtzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph. OWL 2Web ontology language primer. W3C Recommendation 27 October 2009, http://www.w3.org/TR/owl2-primer/.
[29]
K. Kochut and M. Janik. SPARQLeR: Extended sparql for semantic association discovery. In ESWC, pages 145--159, 2007.
[30]
I. Kollia, B. Glimm, and I. Horrocks. SPARQL query answering over OWL ontologies. In ESWC, 2011.
[31]
G. Ladwig and T. Tran. Linked data query processing strategies. In ISWC, 2010.
[32]
A. Letelier, J. Pérez, R. Pichler, and S. Skritek. Static analysis and optimization of semantic web queries. In PODS, pages 89--100, 2012.
[33]
K. Losemann and W. Martens. The complexity of evaluating path expressions in SPARQL. In PODS, pages 101--112, 2012.
[34]
A. Mallea, M. Arenas, A. Hogan, and A. Polleres. On blank nodes. In ISWC, pages 421--437, 2011.
[35]
A. O. Mendelzon and T. Milo. Formal models ofWeb queries. Inf. Syst., 23(8):615--637, 1998.
[36]
D. P. Miranker, R. K. Depena, H. Jung, J. F. Sequeda, and C. Reyna. Diamond: A SPARQL query engine, for linked data based on the rete match. In Workshop on Artificial Intelligence meets the Web of Data, 2012.
[37]
M. Olson and U. Ogbuji. The Versa specification. http://uche.ogbuji.net/tech/rdf/versa/etc/versa-1.0.xml.
[38]
P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web ontology language semantics and abstract syntax. W3C Recommendation 10 February 2004, http://www.w3.org/TR/owl-semantics/.
[39]
J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL. In ISWC, pages 30--43, 2006.
[40]
J. Pérez, M. Arenas, and C. Gutierrez. Semantics of SPARQL. Technical report, Universidad de Chile, 2006. Dept. Computer Science, Universidad de Chile, TR/DCC-2006-17.
[41]
J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL. ACM Trans. Database Syst., 34(3), 2009.
[42]
J. Párez, M. Arenas, and C. Gutierrez. nSPARQL: A navigational language for RDF. J. Web Sem., 8(4):255--270, 2010.
[43]
E. Prud'hommeaux and C. Buil-Aranda. SPARQL 1.1 federated query. W3C Working Draft 17 November 2011, http://www.w3.org/TR/sparql11-federated-query/.
[44]
E. Prud'hommeaux and A. Seaborne. SPARQL query language for RDF. W3C Recommendation 15 January 2008, http://www.w3.org/TR/rdf-sparql-query/.
[45]
M. Schmidt, M. Meier, and G. Lausen. Foundations of SPARQL query optimization. In ICDT, pages 4--33, 2010.
[46]
J. F. Sequeda, M. Arenas, and D. P.Miranker. On directly mapping relational databases to RDF and owl. In WWW, 2012.
[47]
J. F. Sequeda and D. P. Miranker. Ultrawrap: Sparql execution on relational data. Technical Report TR-12-10, University of Texas at Austin, Department of Computer Sciences, 2012.
[48]
J. Umbrich, M. Karnstedt, A. Hogan, and J. X. Parreira. Hybrid SPARQL queries: fresh vs. fast results. In ISWC, 2012.
[49]
M. Y. Vardi. The complexity of relational query languages (extended abstract). In STOC, pages 137--146, 1982.
[50]
V. Vianu. Database techniques for the world-wide web: A survey. SIGMOD Record, 27:59--74, 1998.

Cited By

View all
  • (2020)Preference-driven Control over Incompleteness of Knowledge Graph Query AnswersProceedings of the 12th ACM Conference on Web Science10.1145/3394231.3397911(212-220)Online publication date: 6-Jul-2020
  • (2019)Fast Dual Simulation Processing of Graph Database Queries2019 IEEE 35th International Conference on Data Engineering (ICDE)10.1109/ICDE.2019.00030(244-255)Online publication date: Apr-2019
  • (2018)Expressivity issues in SPARQL: monotonicity and two-versus three-valued semanticsScience China Information Sciences10.1007/s11432-017-9344-561:12Online publication date: 6-Jun-2018
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM SIGMOD Record
ACM SIGMOD Record  Volume 41, Issue 4
December 2012
62 pages
ISSN:0163-5808
DOI:10.1145/2430456
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 17 January 2013
Published in SIGMOD Volume 41, Issue 4

Check for updates

Qualifiers

  • Column

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)0
Reflects downloads up to 22 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2020)Preference-driven Control over Incompleteness of Knowledge Graph Query AnswersProceedings of the 12th ACM Conference on Web Science10.1145/3394231.3397911(212-220)Online publication date: 6-Jul-2020
  • (2019)Fast Dual Simulation Processing of Graph Database Queries2019 IEEE 35th International Conference on Data Engineering (ICDE)10.1109/ICDE.2019.00030(244-255)Online publication date: Apr-2019
  • (2018)Expressivity issues in SPARQL: monotonicity and two-versus three-valued semanticsScience China Information Sciences10.1007/s11432-017-9344-561:12Online publication date: 6-Jun-2018
  • (2017)Regular Queries on Graph DatabasesTheory of Computing Systems10.1007/s00224-016-9676-261:1(31-83)Online publication date: 1-Jul-2017
  • (2017)A Formal Framework for Comparing Linked Data FragmentsThe Semantic Web – ISWC 201710.1007/978-3-319-68288-4_22(364-382)Online publication date: 21-Oct-2017
  • (2016)On the finite and general implication problems of independence atoms and keysJournal of Computer and System Sciences10.1016/j.jcss.2016.02.00782:5(856-877)Online publication date: 1-Aug-2016
  • (2016)Top-K Shortest Paths in Large Typed RDF Datasets ChallengeSemantic Web Challenges10.1007/978-3-319-46565-4_15(191-199)Online publication date: 9-Oct-2016
  • (2014)Link traversal querying for a diverse Web of DataSemantic Web10.3233/SW-1401646:6(585-624)Online publication date: 10-Dec-2014
  • (2014)On Independence Atoms and KeysProceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management10.1145/2661829.2662058(1229-1238)Online publication date: 3-Nov-2014
  • (2014)Querying Linked Data and Büchi AutomataProceedings of the 2014 9th International Workshop on Semantic and Social Media Adaptation and Personalization10.1109/SMAP.2014.15(110-114)Online publication date: 6-Nov-2014
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media